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Abstract

Tackling new machine learning problems with neural networks always means optimizing
numerous hyperparameters that define their structure and strongly impact their performances.
In this work, we study the use of goal-oriented sensitivity analysis, based on the Hilbert—
Schmidt independence criterion (HSIC), for hyperparameter analysis and optimization.
Hyperparameters live in spaces that are often complex and awkward. They can be of different
natures (categorical, discrete, boolean, continuous), interact, and have inter-dependencies.
All this makes it non-trivial to perform classical sensitivity analysis. We alleviate these dif-
ficulties to obtain a robust analysis index that is able to quantify hyperparameters’ relative
impact on a neural network’s final error. This valuable tool allows us to better understand
hyperparameters and to make hyperparameter optimization more interpretable. We illustrate
the benefits of this knowledge in the context of hyperparameter optimization and derive an
HSIC-based optimization algorithm that we apply on MNIST and Cifar, classical machine
learning data sets, but also on the approximation of Runge function and Bateman equations
solution, of interest for scientific machine learning. This method yields neural networks that
are both competitive and cost-effective.
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1 Introduction

Hyperparameter optimization is ubiquitous in machine learning, and especially in deep learn-
ing, where neural networks are often cluttered with many hyperparameters. For applications to
real-world machine learning tasks, finding good hyperparameters carries high stakes. Indeed,
hyperparameters have a strong impact on the prediction error of neural networks as well as
on their cost efficiency, which is an important criterion in scientific computing.

However, the balance between prediction accuracy and cost efficiency is difficult to find.
For instance, recent breakthroughs owed to deep learning can be explained, among other
reasons, by the ability to construct wider and deeper networks, while the computational cost
of one neural network’s prediction increases quadratically with its width and linearly with the
depth [1]. More generally, there are many hyperparameters in deep learning, all impacting
the error and some of them impacting the execution time. It justifies carefully selecting them.

This selection can be fastidious for different reasons. (i) The high number of hyperparam-
eters by itself makes this problem challenging. (ii) Their impact on error changes very often
depending on the problem, so it is difficult to adopt general best practices and permanently
recommend hyperparameter values for every machine learning problem. (iii) Hyperparam-
eters can be of very different natures, and have non-trivial relations, like conditionality or
interactions.

In this paper, we tackle these problems by proposing a goal-oriented sensitivity analysis
that we adapt and apply to complex hyperparameter search space. To this end, we select a
powerful metric used for global sensitivity analysis, called Hilbert-Schmidt independence
criterion (HSIC) [2], which is a distribution dependence measure initially used for two-
sample test problem [3]. Once adapted to hyperparameter search space, HSIC gives insights
into hyperparameters’ relative importance for a given deep learning problem. It allows iden-
tifying which hyperparameters really matter in this situation, thereby addressing challenges
(i) and (ii). Nonetheless, because of challenge (iii), using HSIC in hyperparameter spaces is
non-trivial. First, hyperparameters can be discrete (width of the neural network), continuous
(learning rate), categorical (activation function), or boolean (batch normalization [4]). Sec-
ond, some hyperparameter’s presence is conditional to others (moments decay rates specific
to Adam optimizer [5]). Third, they can strongly interact (as shown in [6]: in some cases,
it is better to increase depth and width by a similar factor). The metric should be able to
compare hyperparameters reliably in such situations. We introduce solutions to overcome
this last challenge and illustrate them with some simple examples and with hyperparameter
optimization for the approximation of Runge function.

Once adapted to such complex spaces, we show that HSIC allows to understand hyperpa-
rameter relative importance better and to focus research efforts on specific hyperparameters.
We also identify hyperparameters that have an impact on execution speed but not on the
error. Then, we introduce ways of reducing the hyperparameter’s range of possible values to
improve the stability of the training and neural network’s cost efficiency. Finally, we propose
an HSIC-based optimization methodology in two steps, one focused on essential hyperpa-
rameters and the other on remaining hyperparameters. It yields competitive and cost-effective
neural networks for real-world machine learning problems: MNIST, Cifar10, and the approx-
imation of the resolution of Bateman equations. This last problem is a physical data set of
interest for scientific machine learning.
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Fig. 1 Example of hyperparameter space

2 Sensitivity Analysis as a New Approach to Hyperparameter
Optimization

In this section, we describe the challenges of hyperparameter optimization. We emphasize
the limits of classical hyperparameter optimization algorithms used to tackle these challenges
and legitimate the approach of sensitivity analysis.

2.1 Challenges of Hyperparameter Optimization

Let a neural network be described by n; hyperparameters xi, ..., X,, with x; € Aj,
iefl,...,npyand 0 = (X1,...,Xp,). We denote F (o) the error of the neural network
on a test data set once trained on a training data set. The aim of hyperparameter optimization
is to find ¢* = argmin, F (o). Even if its formulation is simple, neural networks hyperpa-
rameter optimization is a challenging task because of the great number of hyperparameters to
optimize, the computational cost for evaluating F'(o') and the complex structure of hyperpa-
rameter spaces. Figure 1 gives a graphical representation of a possible hyperparameter space
and illustrates its complexity. Specific aspects to point out are the following ones:

e Hyperparameters do not live in the same measured space. Some are continuous
(weights_decay € [107%, 107!]), some are integers (n_layers € {8,..., 64}),
others are categorical (activation € {relu,...,sigmoid}), or boolean
(dropout € {True, False}).

e They could interact with each others. For instance batch_size adds variance on the
objective function optimized by optimizer.

e Some hyperparameters are not involved for every neural networks configurations, e.g.
dropout_rate is not used when dropout = False or adam_beta is only
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involved when optimizer = adam. In this case, we denote them as “conditional”,
otherwise we call them “main” hyperparameters.

2.2 Classical Hyperparameter Optimization Techniques

Many techniques have been introduced to tackle the problem of hyperparameter optimization.
Grid search or random search [7] uniformly explore the search space. The main difference
between the two methods is that hyperparameters values are chosen on a uniform grid for a
grid search. These values are deterministic, whereas, for a random search, hyperparameters
values are randomly sampled from a uniform distribution in a Monte Carlo fashion. The main
advantages of random search over grid search are that it allows for more efficient exploration
of the hyperparameter search and that it is not constrained to a grid, so it does not suffer
from the curse of dimensionality—which is a problem here since the hyperparameters can be
pretty numerous. On the other hand, these two methods can be costly because they require
training a neural network for each hyperparameter configuration, so exploring the search
space can be computationally very expensive.

Some methods aim at reducing the cost of such searches. For instance, Successive Halving
[8] and Hyperband [9] train neural networks in parallel, like in grid search or random search,
and stop their training after a certain number of epochs. Then, they choose the best half
of neural networks and carry on the training only for these neural networks, for the same
number of epochs, and so on. This procedure allows testing more hyperparameters values
for the same computational budget.

On the contrary, other methods are designed to improve the search quality with less training
instances. Bayesian optimization, first introduced in [10], is based on the approximation of
the loss function by a surrogate model. After an initial uniform sampling of hyperparameter
configurations, the surrogate model is trained on these points and used to maximize an
acquisition function. This acquisition function, often chosen to be expected improvement or
upper confident bound [11], is supposed to lead to hyperparameter configurations that will
improve the error. Therefore, it focuses the computation on potentially better hyperparameters
values instead of randomly exploring the hyperparameter space. The surrogate model can be
a Gaussian process [12], a kernel density estimator [13] or even a neural network [14].

Model-based hyperparameter optimization is not easily and naturally applicable to con-
ditional or categorical hyperparameters that often appear when optimizing a neural network
architecture. Such categorical hyperparameter can be the type of convolution layer for a
convolutional neural network, regular convolution or depth-wise convolution [15]; and a
conditional hyperparameter could be the specific parameters of each different convolution
type. Neural architecture search explicitly tackles this problem. It dates back to evolutionary
and genetic algorithms [16] and has been the subject of many recent works. For instance,
Kandasamy et al. [17] models the architecture as a graph, or Pham et al. [18] and Tan et
al. [19] use reinforcement learning to automatically construct representations of the search
space. See [20] for an exhaustive survey of this field. Nevertheless, their implementation can
be tedious, often involving numerous hyperparameters themselves.

Classical hyperparameter optimization methods handle hyperparameter optimization quite
successfully. However, they are end-to-end algorithms that return one single neural network.
The user does not interact with the algorithm during its execution. This lack of interactivity
has many automating advantages but can bring some drawbacks. First, these methods do not
give any insight on the relative importance of hyperparameters, whereas it may be of interest in
the first approach to a machine learning problem. They are black boxes and not interpretable.
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Second, one could have other goals than the accuracy of a neural network, like execution speed
or memory consumption. Some works like [19] introduce multi-objective hyperparameter
optimization, but it requires additional tuning of the hyperparameter optimization algorithm
itself. Finally, there may be flaws in the hyperparameter space, like a useless hyperparameter
that could be dropped but is included in the search space and becomes a nuisance for the
optimization. This aspect is all the more problematic since some popular algorithms, like
gaussian process-based Bayesian optimization, suffer from the curse of dimensionality. We
can sum up the drawbacks as lack of interpretability, difficulties in a multi-objective context,
and unnecessary search space complexity.

2.3 Benefits of Sensitivity Analysis

In this work, we alleviate these concerns by mixing hyperparameter optimization with hyper-
parameter analysis. In other words, we construct an approach to hyperparameter optimization
that relies on assessing hyperparameter’s effects on the neural network’s performances.
One powerful tool to analyze the effect of some input variables on the variability of a
quantity of interest is sensitivity analysis [21]. Sensitivity analysis consists of studying the
sensitivity of the output of a function to its inputs. We could define this function as F and its
inputs as o. Then, it would be possible to make hyperparameter optimization benefit from
characteristics of sensitivity analysis. Indeed, sensitivity analysis allows specifically:

e Analyzing the relative importance of input variables for explaining the output, which
helps to answer the lack of interpretability problem. We could better understand
hyperparameters’ impact on the neural network error.

e Selecting practically convenient values for input variables with a limited negative impact
on the output. It simplifies the multi-objective approach since we could, for instance,
select values that improve execution speed with a limited impact on the neural network
error.

o Identifying where to efficiently put research efforts to improve the output, which answers
the unnecessary search space complexity problem. Indeed, we could focus on fewer
hyperparameters to optimize by knowing which of them most impact the neural network
error.

2.4 Goal-Oriented Sensitivity Analysis

Several types of sensitivity measures can be estimated after an initial sampling of input
vectors and their corresponding output values. The first type of metric gives information
about the contribution of an input variable to the output based on variance analysis. The
most common metric used for that purpose are Sobol indices [22], but they only assess
the contribution of variables to the output variance. Goal-oriented Sobol indices [23] or
uncertainty importance measure [24] construct quantities based on the output whose variance
analysis gives more detailed information. However, computing these indices can be very
costly since estimating them with an error of O( ‘/%) requires (n,+2) x ng sample evaluations
[25], which can be prohibitive for hyperparametér analysis. Another type of metrics, called
dependence measures, assesses the dependence between x; (that can be a random vector)
and the output F (o) [26]. It relies on the claim that the more x; is independent of F (o), the
less important it is to explain it. Dependence measures are based on dissimilarity measures
between Py; Py and Py, y, where x; ~ Py, andy = F(0) ~ Py, since Py;y = Px; [Py when
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x; and y are independent. In [26], the author gives several examples of indices based on
dissimilarity measures like f-divergences [27] or integral probability metrics [28]. These
indices are easier and less expensive to estimate (n, training instances instead of (n; +
2) x ny) than variance-based measures since they only need a simple Monte Carlo design of
experiment.

This work focuses on a specific dependence measure, known as the Hilbert—Schmidt
independence criterion (HSIC). The following sections are dedicated to the description of
HSIC and its adaptation to hyperparameter optimization.

3 HSIC-Based Goal-Oriented Sensitivity Analysis

In this section, we recall the definition of Hilbert Schmidt independence criterion, how to
use it in practice, and how to adapt it in order to perform goal-oriented sensitivity analysis.

3.1 From Integral Probability Metrics to Maximum Mean Discrepancy

Let x and y be two random variables of probability distribution Px and Py defined in X'

Authors of [3] show that distributions Py = Py if and only if E[ f(x)] — E[f(y)] = 0 for

all f € C(X), where C(X) is the space of bounded continuous functions on X. This lemma

explains the intuition behind the construction of Integral Probability Metrics (IPM) [28].
Let F be a class of functions, f : X — R. An IPM v is defined as

Y(F. Py, Py) = ;UB)TIE[f(X)] —ELfWII. ey

The Maximum Mean Discrepancy (MMD) can be defined as an IPM restricted to a class
of functions F7 defined on the unit ball of a Reproducing Kernel Hilbert Space (RKHS) H
of kernel k : X2 — R. In [2], this choice is motivated by the capacity of RKHS to embed
probability distributions efficiently. The authors define px such that E(f(x)) = (f, ux)# as
the mean embedding of Px. Then, ykz (Px, Py) can be written

VEPx, Py) = Il — iyl

= [ [ K x10u@) = py @ ox3) = pyodndy @)
= E[k(x, x)] + E[k(y, ¥y)] — 2E[k(x, )],
where py(x)dx = dPy, py(y)dy = dPy, x, X' are iid (independent and identically dis-

tributed) and y, y’ are iid. After a Monte Carlo sampling of {x1, ..., Xp yand {y1,..., yn,}s
sz (P, Py) can thus be estimated by )7k2 (P, Py), with

R =S Y kw3 S ko =23 Y kG, O)

j=11=1 j=11=1 j=11=1

and )9,3 (Px, IPy) being an unbiased estimator, its standard error can be estimated using the
empirical variance of )7,3 Py, Py).
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3.2 Hilbert-Schmidt Independence Criterion (HSIC) for Goal-Oriented Sensitivity
Analysis

Letx € X andy € ), and G the RKHS of kernel k : X% x Y* — R. HSIC can be written

HSIC(Kx,y) = sz(]P)xy» ]P)x]P)y) = ”Mxy - l‘«xl’by”g- 4

Then, HSIC measures the distance between Pyy and Py[Px embedded in ‘H. Indeed, since
x L y = Pyxy = PyP, the closer these distributions are, in the sense of y, the more
independent they are.

In [29], the authors present a goal-oriented sensitivity analysis by focusing on the sensi-
tivity of F w.rt. X; wheny = F(xq,...,X,,) € Y, with Y C R. The subset Y is chosen
based on the goal of the analysis. In the context of optimization, for instance, Y is typically
chosen to be the best percentile of Y. To achieve this, the authors introduce a new random
variable, z = 1ycy. Then,

HSIC(x;,2) = P(z = 1)* x y#(Px;o=1, Py,), )

so HSIC(x;,z) measures the distance between Xx; and x;|z = 1 (to be read x; conditioned
to z = 1) and can be used to measure the importance of x; to reach the sub-space Y with F.
Using the expression of yx given by Eq.(2), its exact expression is

HSIC(x;,z) = P(z = 1)? []E[k(x,-, x)]1+ Elk(z, 2')] — 2E[k(x;, z)]], (6)

where x;, x: are iid and z, Z’ are iid. It is estimated for each x; using Monte Carlo estimators
denoted by Sy, v, based on samples {x; 1,...,x; ,,} from x; ~ dPy, and corresponding
{z1,..., zn,} drawn from z. The estimator Sy, y is defined as

ns Ny

1
Sey =Pz=1) [m DO k(xij.xind(z; = Déz = 1)
j=11=1

ng N

2zzk(xljaxt l) (7)

j=1i=1

ns Ny

2
nym

i Xi1)8(z = 1)],

j=li=1

withm = Z“ §(zx = 1) and §(a) = 1if a is True and O otherwise. We use this metric in the
following. This section mainly summed up the mathematics on which the sensitivity indices
are based and how they are used in practice in a sensitivity analysis context. The following
section is devoted to the application of HSIC in hyperparameter spaces.

3.3 The Kernel Choice

Equation (2) involves to choose a kernel k. In practice, k is chosen among a class of
kernels that depends on a set of parameters h € H, where H is a kernel parameter
space. We therefore temporarily denote the kernel by kp. Examples of kernels are the

Gaussian Radial Basis Function k;, : (x,y) — exp(— ”x y 12 ) or the Matérn function

kn: (x,y) > o2 F(v) (\/ llx= y”) V(«/ vw) whereh = {0, v, n}, [" is the gamma
function and K, is the modified Bessel function of the second kind. In [30], the authors study
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the choice of the kernel, and more importantly of the kernel parameters h. They state that,
for the comparison of probabilities IPx and Py, the final parameter h* should be chosen such
that

Vi (Px, Py) = supyg. (Py, Py). ®)
heH

The authors suggest focusing on unnormalized kernel families, like Gaussian Radial Basis
Functions {kj, : (x,y) — exp(— ”x y” ), h € (0,00)}, also used in [26], for which they
demonstrate that )?kzh . Px, Py), deﬁned as

ng Ny nsg Ny ns Ny

P (Px, Py) = sup YD kG xD+ Y k(i) =2 Y knCxi ) [

j=11=1 j=11=1 j=11=1

is a consistent estimator of y,fh . (Px, Py). It is thus possible to choose h by maximizing

)?kzh (Px, Py) with respect to h. Therefore, in this work, we use Gaussian Radial Basis Functions
kernel. We select h* after the maximization of the MMD described above, which boils
down to maximizing Eq. (7) in our case. Once h* is chosen, the approximation error of
];kzh . (Px, Py) can also be estimated like in Sect.3.1. It is important to note that szh (P, Py)

can be estimated in a O(n?) computational complexity, which is not expensive given usual
values of n in hyperparameter optimization context. The total complexity of the minimization
process depends on the minimization algorithm, but since the optimization problem is low
dimensional—there is never more than a handful of kernel parameters—the whole process is
always cost effective. To simplify the notations, we denote kp+ by k in the following sections.

4 Application of HSIC to Hyperparameter Spaces

HSIC has two advantages that make it stand out from other sensitivity indices and make it
particularly suitable to hyperparameter spaces. First, Eq. (7) emphasizes that it is possible to
estimate HSIC using simple Monte Carlo estimation. Hence, in the context of hyperparameter
optimization, such indices can be estimated after a classical random search. Secondly, using
Eq. (5), HSIC allows to perform goal-oriented sensitivity analysis easily, i.e. to assess the
importance of each hyperparameter for the error to reach a given Y. For hyperparameter
analysis, Y can be chosen to be the sub-space for which F(x1, .. ., X,,,) isin the best percentile
p of a metric (L, error, accuracy,...), say p = 10%. Then, the quantity Sy, y measures the
importance of each hyperparameter x; for obtaining the 10% best neural networks.

However, one cannot use HSIC as is in hyperparameter analysis. Indeed, hyperparameters
do not live in the same measured space, they could interact with each other, and some are not
directly involved for each configuration. In the following sections, we suggest some original
solutions to these issues.

To illustrate the performances of these solutions, we consider a toy example which is the
approximation of Runge function r : x — ﬁ, x € [—1, 1] by a fully connected neural
network. This approximation problem is a historical benchmark of approximation theory. We
consider ny = 14 different hyperparameters (see “Appendix A” for details). We randomly
draw ng = 10,000 hyperparameter configurations and perform the corresponding training
on 11 training points. We record the test error on a test set of 1000 points. All samples are
equally spaced between 0 and 1.
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Table 1 Sy y values for x; and

X1 X2
X2

Sey(x1072) 1.17 £0.05 1.55 £0.05

In Sect.4.1, we introduce a transformation to deal with hyperparameters that do not
live in the same measured space. Then, in Sect.4.2 we explain how to use HSIC to eval-
uate hyperparameters’ interactions. Finally, in Sect. 4.3 we deal with conditionality between
hyperparameters.

4.1 Normalization of Hyperparameter Space

Hyperparameters can be defined in very different spaces. For instance, the activation func-
tion is a categorical variable that can be relu, sigmoid or tanh, dropout_rate is
a continuous variable between 0 and 1 while batch_size is an integer that can go from
1 to hundreds. Moreover, it may be useful to sample hyperparameters with a non-uniform
distribution (e.g. log-uniform for learning_rate). Doing so affects HSIC value and its
interpretation, which is undesirable since this distribution choice is arbitrary and only relies
on practical considerations. Let us illustrate this phenomenon in the following example.

Example 1 Let f : [0,2]*> — {0, 1} such that

1) — {1 if x; € 10,11, x2 € [0, 1],
0  otherwise.

Suppose we want to assess the importance of x| and x, for reaching the goal f(x1, x2) = 1
without knowing f. In the formalism of the previous section, we have Y = {1}. Regarding
its definition, x; and x, are equally important for f to reach Y, due to their symmetrical
effect. Let x; ~ N(1, 0.1, [0, 2]) (normal distribution of mean 1 and variance 0.1 truncated
between 0 and 2) and x; ~ U[0, 2]. We compute Sy, y and Sy, y with ny; = 10,000 points
and display their value in Table 1. The values of Sx, y and S, y are quite different. It is
natural since their chosen initial distribution is different. However, this choice has nothing to
do with their actual importance; it should not have any impact on the importance measure.
Here, we could erroneously conclude that x; is more important than x;.

This example shows that we have to make S, y and ij,y comparable in order to say that
hyperparameter x; is more important than hyperparameter x ;. Indeed, if x; and x; do not
follow the same distribution or A; # X;, it may be irrelevant to compare them directly. We
need a method to obtain values for Sy, y that are robust to the choice of dPy;. To tackle this
problem, we introduce the following approach for comparing variables with HSIC. Let ®;
be the CDF of x;. We have that ®; (x;) = u;, with u; ~ U[0, 1]. After an initial Monte Carlo
sampling of hyperparameter x;, which can be a random search, we can apply ®; to each input
point to obtain u; corresponding to x; with u; iid, so living in the same measured space. Yet,
one must be aware that to obtain u; ~ U[0, 1], its application is different for continuous and
discrete variables:

e For continuous variables, ®; (x;) is a bijection between X; and [0, 1] so ®; can be applied
on draws from X;.

e For categorical, integer or boolean variables, ®;(x;) is not a bijection between X; and
[0, 1]. Suppose that x; is a discrete variable with p possible values {x;[1], ..., x;[p]},
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Table2 Sy y values for uj and

uj uz
uz

Sy (x1072) 1.54 +0.05 1.55 +0.05

0.005 4 optimizer
activations
n_layers
loss_function
batch_size
N_seeds
bias_reg_I2
bias_reg_I1
batch_norm
weights_reg_I1
weights_reg_I2
dropout
n_units

1 dropout_rate

0.004 4

0.003 4

0.002 4

0.001 1

[
E——— |

Fig.2 Comparison of Sy, y for hyperparameters in Runge approximation problem. The hyperparameters are
ordered from the most important (top of the legend) to the least important (bottom of the legend), and their
value is graphically represented in a stacked bar plot following the same order. Y = [8.81 x 1079, 4.84x107]

0.000

each with probability w,. Letusencode {x;[1], ..., x;[p]}by {1, ..., p}. Then, ®;(x;) =
Zi:] w1y <j1(x;). When ®; is applied as is, ®;(x;) is not uniform. To overcome
that, one can simply use u; = Z]p.zl L{[Z,Kj wy, Zk<j+1 wi]8(x; = j). This trick,
introduced in [31], is commonly used in Monte Carlo resolution of partial differential
equations [32]. As a result, u; ~ U[0, 1].

Finally, all we have to do is to sample x;, like in a classical random search, following the
distribution we want, and then apply ®; to obtain u;. The corresponding HSIC estimation is
Sy, Y- It only involves u; and u;|z = 1 and since u; are iid, the comparison of different Sy, y
becomes relevant. Coming back to the previous example, Table 2 displays values of Sy, y and
Su,,v- This time, the value is the same, leading to the correct conclusion that both variables
are equally important. Note that in the following, we denote Sy, y by Sy, y for clarity but
always resort to this transformation.

Remark 1 To normalize the distribution of a hyperparameter x;, we use the inverse CDF
transform dDIfI to obtain uniform variable u; . However, one could choose to further transform
u; into another variable using some operator G to obtain another distribution, for instance to
improve MMD estimation. The variable to compare would thus be G(CDI._1 (xi)), and would
all follow the same distribution, hence still benefiting from the normalization methodology.

Let us apply this methodology to the Runge approximation hyperparameter analysis
problem. Figure 2 displays a comparison between Sy, y for hyperparameters of the Runge
approximation problem, with Y the set of the 10% best neural networks. For readabil-
ity, we order x; by Sy, y value in the legend and the figure. We also display black
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error bars corresponding to HSIC estimation standard error. This graphic highlights that
optimizer is by far the most important hyperparameter for this problem, followed by
activation, loss_function and n_layers. Other hyperparameters may be con-
sidered non-impactful because their Sx; y values are low. Besides, these values are lower
than the error evaluation. It could be only noise, and therefore these hyperparameters can not
be ordered on this basis.

Remark 2 The normalization methodology alleviates the problem of sensitivity of Sy, y to X;
distribution. Nevertheless, the initial CDF of x; still affects the value of S, y and thereby its
interpretation. Indeed, for the HSIC of an important hyperparameter to be actually high, the
initial CDF of the hyperparameter must include values that lead to low test errors but also
values that lead to high test errors. Indeed, if we miss the part of the hyperparameter space
that allows for low test errors, the HSIC may be low because the value of the considered
hyperparameter does not matter since it will always be suboptimal. On the contrary, if we
shrink the search space around the optimal value, the HSIC will be low as well because the
hyperparameter value will always be close to optimal. For instance, in the Runge example,
it turns out that sigmoid and tanh are the best activation functions, far ahead relu and
elu. If the search space was restricted to {sigmoid, tanh} or {relu, elu}, the rank of
hyperparameter "activations" would drop because each value within a same subset has a
similar impact on test error.

4.2 Interactions Between Hyperparameters

If Sy, v is low, it means that Py, and IP, are close to independent. We could want to conclude
that x; has a limited impact on Y. However, x; may have an impact due to its interactions
with some of the other hyperparameters. In other words, let x; and X ; be two variables, it can
happen that S, y and ij,Y are low while S(X[,Xj),y is high.

Example 2 For instance let f : [0, 2]3 — {0, 1} such that

1 ifx; €[0,1],x2 €[1,2],x3 € [0, 1],
f(x1,x2,x3) =1  ifx; €[0,1],x2 € [0, 1],x3 € [1,2],
0  otherwise.

In that case, let Y = {1}, Vx € [0, 2] we have px,|,=1(x) = px, (x) and px;),=1(x) = px; (x).
Hence, according to Eq. (6) we have HSIC(x2, z) = HSIC (x3,z) = 0. However, we have

HSIC(x1,2) = P(z = 1)2/ ]zk(x,x’)[pxl‘zzl(x) — P ()]

[0,2
x [Pxiz=1(x") = px, (x")]dxdx’
1
- 7[ / k(x, x)dxdx' + / k(x, x")dxdx'
8 [0,1]x[0,1] [1,2]x[1,2]

— 2/ k(x, x’)dxdx/],
[0,1]1x[1,2]

so for non-trivial choice of k, HS1C(x1, z) # 0. One could deduce that x; is the only relevant
variable for reaching Y, but in practice it is necessary to chose x and x3 carefully as well. For
instance, if x; € [0, 1], f(x1,X2,x3) = 1ifxy € [1,2]and x3 € [0, 1] but f(x1,X2,Xx3) =0
if x, € [1, 2] and x3 € [1, 2]. This is illustrated in Fig.3, which displays the histograms of
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Fig.3 From left to right: (1) Pairs of (x3|z = 1, x3|z = 1). (2) Histogram of x| and x|z = 1. (3) Histogram
of x7 and x|z = 1. (4) Histogram of x3 and x3|z = 1

Table 3 Sy y values for variables of the experiment

X] X2 X3 (x2,x3) (X4, X5)

Sey 1.51 x 1072 6.26 x 107° 1.64 x 1073 3.47 x 1073 3.70 x 107

X1 X2 X3 Xa Xs
X1
0.012
Xa 0.010
0.008
X3
0.006
Xa 0.004
0.002
Xs
0.000

Fig.4 Sy y for each pair of variable

x1 and x|z = 1, X and x2|z = 1, x3 and x3|z = 1, obtained from 10,000 points (xp, X2, X3)
sampled uniformly in the definition domain of f.

Histograms are the same for x», x2|z = 1 and x3, x3|z = 1 (uniform between 0 and 2),
but different for x;, x;|z = 1. Therefore, HSIC being a distance measure between x; and
X1]z = 1, it becomes intuitive that it will be high for x; and close to zero for x, and x3,
even if X, and x3 are important as well because of their interaction. To assess this intuition,
we compute Sy, Y , Sx,,Y, Sx3,y and S(x, x3),y after simulating f for ny; = 2000 points. We
also compute S(x, xs),Y, With X4 and x5 two dummy variables, uniformly distributed, to have
a reference for S(x, x;),y. The results can be found in Table 3. They show that Sy, y and
S(x,,x3),Y are of the same order while Sx, )y, Sx;,y and S(x, xs),y are two decades lower than
Sx,,Y, which confirms that Sx y may be low while interactions are impactful.

Additionally, we display the Sx; x ),y for each pair of variable x; and x; on Fig.4. We can
see that for variables other than Xy, S(x;,x;),v is high only fori = 2 and j = 3. This example
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n_layers
0.00030
n_units n_units
activations
0.00025
dropout dropout
batch_norm batch_norm
- 0.00020

weights_reg_I1 weights_reg_|1

weights_reg_I2 weights_reg_|2 000015
bias_reg_I1 bias_reg_I1 =
bias_reg_I2 bias_reg_I2 000010
batch_size batch_size . . g

loss_function 0.00005

optimizer

N_seeds .
(a) (b)

Fig.5 a S X;).Y for each pair of hyperparameters. b S(X,‘,Xj),Y for each pair of hyperparameters, except

N.seeds 0.00000

for optimizer, activation, n_layers and loss_function. The grid can be read symmetrically
with respect to the diagonal

shows that it is necessary to compute Sy y of joint variables to perceive the importance of
interactions between variables.

The values are easy to interpret in this example because we know the behavior of the
underlying function f. In practice, Sx,,y and S(x, x;),y can not be compared because (x2, X3)
and x; do not live in the same measured space (X, x A3 and X respectively). Moreover, like
we see on Fig.4, S, x;),y is always the highest when i = 1, regardless of j. In fact, if for
a given variable x;, Sy, y is high, so will be S(x,-,xj),Y for any other variable x ;. Hence, care
must be taken to only compare interactions of low Sy y variables with each others, and not
with high Sy y variables. Coming back to Runge approximation example, Fig.5a displays
the S(x, x;),y for each pair of hyperparameters, and Fig. 5b for each pair of hyperparameters,
except for the impactful hyperparameters optimizer, activation, n_layers and
loss_function.

Figure 5a and b illustrate the remarks of the previous section. First, if we only look for
interactions on Fig. 5a, we would conclude that the most impactful hyperparameters are the
only one to interact, and that they only interact with each others. Figure 5b shows that this
conclusion is not true. Hyperparameter batch_size is the 5-th most impactful hyperpa-
rameter, and like we can see in Fig.2, is slightly above the remaining hyperparameters. It
is normal that Spatch_sizex;),yv is high, with x; every other hyperparameters. However,
S(batch_sizen units)Y 18 higher, whereas n_units is the 13-th most impactful hyperpa-
rameter. This means that batch_size interacts with n_units in this problem, i.e. that
when considered together, they contribute to explain the best results.

Remark 3 1In this work, we do not assess the interactions beyond second order because hav-
ing to consider S, ,....xy),Y Would be overwhelming. In addition, evaluating higher-order
interactions would be subject to the curse of dimensionality since the considered subspace
dimension would increase, while the number of samples to characterize it would remain the
same. That is why we recommend only considering second-order interactions as a trade-off.
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4.3 Conditionality Between Hyperparameters

Conditionality between hyperparameters, which often arises in Deep Learning, is a non-trivial
challenge in hyperparameter optimization. For instance, hyperparameter "dropout_rate"
will only be involved when hyperparameter "dropout” is set to True. Classically, two
approaches can be considered. The first (i) splits the hyperparameter optimization between
disjoint groups of hyperparameters that are always involved together, like in [13]. Then, two
separate instances of hyperparameter optimization are created, one for the main hyperparam-
eters and another for dropout_rate. The second (ii) considers these hyperparameters as
if they were always involved, even if they are not, like in [33]. In that case, dropout_rate
is always assigned a value even when dropout = False, and these dummy values are
used in the optimization. First, we explain why these two approaches are not suited to our
case. Then we propose a third approach (iii).

(i) The first formulation splits the hyperparameters between disjoints sets of hyper-
parameters whose value and presence are involved jointly in a training instance. In
Runge approximation hyperparameter analysis, since dropout_rate is the only con-
ditional hyperparameter, it would mean to split the hyperparameters between two groups:
{dropout_rate} and another containing all the others. This splitting approach is not
suited to HSIC computation because it produces disjoints sets of hyperparameters, while
we would want to measure the importance of every hyperparameter and compare it to
each other hyperparameter. Here, dropout_rate could not be compared to any other
hyperparameters.

(ii) In the second case, if we apply HSIC with the same idea, we could compute HSIC of a
hyperparameter with irrelevant values coming from configurations where it is not involved.
Two situations can occur. First, if a conditional variable x; is never involved in the hyperpa-
rameter configurations that yield the p-percent best accuracies (depending on the percentile
chosen), the values used for computing Sy; v, i.e. X;|z = 1, are drawn from the initial, uniform
distribution u;. Then, Sy, y will be very low, and the conclusion will be that it is not impactful
for reaching the percentile, which is correct since none of the best neural networks have used
this hyperparameter. However, if x; is only involved in a subset of all tested hyperparameter
configurations and is impactful in that case, Sy, y would be lowered by the presence of the
other artificial values of x; drawn from the uniform distribution. In that case, we could miss
its actual impact. The following example illustrates this phenomenon.

Example 3 Let f : [0, 2]> — {0, 1} such that:

B if x; € [0, 1], x2 € [0, t]
f(xi,x2,x3) =11 ifx; €[0,1],x2 €[1,2],x3 € [0, 1],
0 otherwise,

With B a Bernoulli variable of parameter 0.5 and ¢ € [0, 2] (so that Sy, y is low). Let
Y = {1}. In that case, x; plays a key role for reaching Y, and x3 is taken into account only
when x, > t. In these cases, it is as important as x; for reaching Y and we would like
to retrieve this information. Parameter ¢ allows controlling how many values of x3 will be
involved. We evaluate f on ng; = 2000 points uniformly distributed across [0, 213, first with
t=1.

Figure 6a compares the histograms of x3 and x3|z = 1. Figure 6b compares histograms
of X3|xo» > t and of x3|xp > ¢, z. This shows that the distribution of x3|z = 1 is different
if we choose to consider artificial values of x3 or values of x3 that are actually used by f
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Fig. 7 Top (ii): Sx,y for x, X and x3 for different values of 7. Bottom (iii): Sx y for x1|xa > 1, x3|xp > ¢
and x3|xp > ¢ for different values of ¢

(x3|x2 > t). Figure 6¢ and d show that relative values of Sk, y and Sk, y are quite different
whether we chose to consider x > ¢ or not, meaning that the conclusions about the impact
of x3 can be potentially different. To emphasize how different these conclusions can be, we
compare Sy, y and S, y for different values of 7. The results are displayed on Fig. 7(top row).
Since the value of ¢ controls how much artificial values there are for x3, this demonstrates
how different Sy, y can be, depending on the amount of artificial points. This experiment
emphasizes the problem because in all cases, x3 is equally important for reaching Y whereas
for t = 1.8 we would be tempted to discard x3.

To sum up, this formulation brings significant implementation advantages because it allows
computing Sy, y as if there were no conditionality. However, it carries a risk to miss essential
impacts of conditional hyperparameters and discard them illegitimately.

(iii) In this work, we propose a splitting strategy that produces sets of hyperparameters that
are involved together in the training, but are not disjoints, unlike (i). Let J; € {1, ..., n;} be
the set of indices of hyperparameters that can be involved in a training jointly with conditional
hyperparameter x;. We define Gy, = {x;|xx,i € Ji}, the set of hyperparameters involved
jointly in hyperparameter configurations when x is also involved. By convention, we denote
the set of all main hyperparameters by Go. In Runge problem, dropout_rate is the only
conditional hyperparameter, so we have two sets Go = {X1, ..., Xy, } \dropout_rate and
Garopout_rate = {X1|dropout_rate,...,X,,|dropout_rate} = {xi|dropout =
true,..., Xy, |[dropout = true}. Itis then possible to compute Sy, y for x; € Gy, iden-
tify the most impactful main hyperparameters, then to compute Sy, y forX; € Garopout_rate
and to assess if dropout_rate is impactful by comparing it to other variables of
Garopout_rate. On the example problem, we can compute Sy, y only for xi, xo and x3
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Fig.8 Comparison of le-,Y for variables x; € Go (a) and for variables X; € Garopout_rate (b)

when x; > t. This set would be Gy, (except that x» is not categorical nor integer—but in
that case we can consider X, = 1(xy > 7)). On the bottom row of Fig. 7, Sx,|x,>1,Y and
Sx;|x,>1,Y keep approximately the same values for all ¢, which is the correct conclusion since
when x3 is involved (i.e. X2 > f), it is as important as x; for reaching Y. Coming back to
Runge, Fig. 8 displays Sy, y for Runge approximation for X; € Garopout_rate, compared
to the first approach where we do not care about conditionality, though in this specific case
it does not change much of the conclusion that dropout_rate is not impactful.

In Runge example, we have only considered one conditional hyperparameter, which is
dropout_rate,leading to only two groups Gp and Garopout_rate. For another, more com-
plex example, we could introduce additional conditional hyperparameters such as Stochastic
Gradient Descent (SGD)’s momentum. In that case, there would be two additional groups.
The group Gmomentum, that contains hyperparameters conditioned to when momentum is
involved, but also G(aropout_rate,momentum) that contains hyperparameters conditioned to
when momentum and dropout_rate are simultaneously involved. If the initial ran-
dom search contains ng configurations, dropout_rate and momentum are involved in
ng /2 configurations. HSIC estimation of hyperparameters of the groups Garopout_rate and
Omomentum Will be coarser but still acceptable. However, dropout_rate and momentum
would only be involved simultaneously in 5 /4 configurations, which may lead to too inaccu-
rate HSIC estimation for G(gropout_rate,momentum)- This happens because dropout_rate
and momentum do not depend on the same main hyperparameter. Hence, to avoid this prob-
lem, we only consider groups G with conditional hyperparameters that depend on the same
main hyperparameter. In our case, these groups are Gy, Garopout_rate aNd Gmomentum-

4.4 Summary: Evaluation of HSIC in Hyperparameter Analysis

In this section, we summarize the results of the previous discussions to provide a methodology
for evaluating the HSIC of hyperparameters in complex search spaces in Algorithm 1.
Comments on Algorithm 1. Line 1: one can choose any initial distribution for hyperpa-
rameters. Line 2: this step is a classical random search. Recall that HSIC evaluation can be
applied after any random search, even if it was not initially conducted for HSIC estimation.
Configurations o; are sampled from 0 = (X1, ..., X,,) € H. Line 3: this step strongly ben-
efits from parallelism. Line 4: the set Y is often taken as the p % percentile of {y1, ..., y,,},
but can be any other set depending on what we want to assess. Line 6-10: the evaluation
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starts with main hyperparameters because they are always involved. Once most impactful
main hyperparameters are selected, we assess the conditional ones.

Algorithm 1 Evaluation of HSIC in hyperparameter analysis

1: Inputs: hyperparameter search space H = X X ... X Xy, ng.

2: Sample ns hyperparameter configurations {0 |, ..., 075, }.

3: Train a neural network for each configuration and gather outputs {y1, ..., yn, }-
4: Define Y.

5: Construct conditional groups Gy, ....

6: for each group, starting with Gy do

7 Construct u; for every x; using ®; of Section 4.1.

8 Compute Sy; y := Sy, y using equation (7).

9: By comparing them, select the most impactful hyperparameters.

10:  Check for interacting hyperparameters.

11: end for

12: Outputs: Most impactful hyperparameters and interacting hyperparameters.

Remark 4 As mentioned in Sect.4.1, the value of Sy, y strongly depends on the initial dis-
tribution chosen for x;. Indeed, if the distribution only spans values of x; that yield good
prediction error, Sy, y will be low. Conversely, if it spans good values but also includes
absurd values, Sy; y will be higher. Hence, without a priori knowledge, we recommend to
select a large range of values for each x;

5 Experiments

Now that we can compute and correctly assess HSIC, we introduce possible usages of this
metric in the context of hyperparameter analysis. In this section, we explore three benefits
that we can draw from HSIC based hyperparameter analysis.

e Interpretability: HSIC allows analyzing hyperparameters, obtaining knowledge about
their relative impact on error.

e Stability: Some hyperparameter configurations can lead to dramatically high errors. A
hyperparameters range reduction based on HSIC can prevent such situations.

e Acceleration: We can choose values for less important hyperparameters that improve
inference and training time.

We illustrate these points through hyperparameter analysis when training a fully connected
neural network on MNIST and a convolutional neural network on Cifar10. We also study the
approximation by a fully connected neural network of Bateman equations solution. Details
about the construction of Bateman equations data set can be found in “Appendix C” and
hyperparameter spaces and conditional groups Go, . .. for each problem in “Appendix A”.

5.1 Hyperparameter Analysis

This section presents a first analysis of the estimated value of HSIC for the three benchmark
data sets: MNIST, Cifar10, and Bateman equations. These evaluations are based on an initial
random search for n; = 1000 different hyperparameter configurations. The set Y is the 10%-
best errors percentile, so ny is taken sufficiently large for HSIC to be correctly estimated.
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Fig. 9 a MNIST. Y = [97.02, 98.82] (accuracy) b Cifar10. Y = [70.2, 81.37] (accuracy) ¢ Bateman. Y =
[2.99 x 1074, 5.99 x 10~4] (L error). (top) Histograms of the initial random sampling of configurations and
(bottom) comparison of S, y for every main hyperparameters

Indeed, if ny; = 1000, there will be 100 samples of u;|z = 1. For every data set, we extract
10% of the training data to construct a validation set to evaluate z. We keep a test set for
evaluating neural networks obtained after hyperparameter optimization described in Sect. 6.
This random search was conducted using 100 parallel jobs on CPU nodes for fully connected
neural networks and 24 parallel jobs on Nvidia Tesla V100 and P100 GPUs for convolutional
neural networks, so the results for these configurations were obtained quite quickly, in less
than two days.

Note that for each data set, graphical comparison of S, y for conditional groups Gy, . ..
is displayed in “Appendix B”, for conciseness and clarity.

5.1.1 MNIST

We train ny = 1000 different neural networks. We can see on Fig.9a that the accuracy
goes up to ~ 99%(1 — error) which is quite high for a fully connected neural network
on MNIST. Figure9a also displays the values of Sy, y for each hyperparameter x; stacked
vertically. Here, activation, optimizer,batch_sizeand loss_function have
significantly high Sy; y. Hyperparameter n_layers also stands out from the remaining
hyperparameter, while staying far below loss_function HSIC. There is one conditional
group to consider, Garopout_rate, and dropout_rate is found not to be impactful.

Interestingly, neither the depth (n_layers) nor the width (n_units) are among the
most important hyperparameters. Notice that the random search yields a neural network of
depth 4 and width 340 which obtained 98.70% accuracy, while the best networks (there were
two) obtained 98.82% accuracy for a depth of 10 and a width of 791 and 1403, respectively.
Recall that the min—max depth was 1-10 and width was 134-1500. It means that lighter
networks are capable of obtaining competitive accuracy. Another interesting observation is
that loss_function does not have the highest HSIC, meaning that mean squared error
allows obtaining good test errors, which is surprising for a classification problem.
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Fig. 10 a MNIST b Cifar10 ¢ Bateman. Representation of u; |z = 1 (orange for KDE and blue for histogram)
and u; (red for KDE and grey for histogram), for hyperparameters x; with high (top) and low (bottom) S, y

We plot histograms of u; and u;|z = 1 on Fig. 10a for activation (top) and
weights_reg_11 (bottom) with repeated sampling for categorical hyperparameters, like
in Sect.4.1. Note that the first and the second hyperparameters have respectively a high and
low Sy, y. We can see that for hyperparameters with high Sy; v, u;|z = 1 (orange for Kernel
Densiy Estimation (KDE) smoothing, blue for histogram) is quite different from u; (red for
KDE, gray for histogram). On the contrary, for hyperparameters with low Sy; y there not
seems to have major differences.

5.1.2 Cifar10

We train ny; = 1000 different convolutional neural networks. After the initial random search,
the best validation accuracy is 81.37%. Note that the histogram of Fig.9b is truncated
because many hyperparameter configurations led to diverging errors. Here, pool_type,
optimizer, activation, learning rate and kernel_size have the highest
Sy;.Y, followed by n_ filters. Half of these hyperparameters are specific to convolutional
neural networks, which validates the impact of these layers on classification tasks for image
data. The conditional groups are listed in “Appendix A”. We do not show Sy, y comparisons
for every group for clarity of the article and simply report that one conditional hyperparam-
eter centered, which triggers centered RMSprop if this value is chosen for optimizer,
is also found to be impactful.

The depth (n_layers) is the less important hyperparameters. Here, the random search
yields a neural network of depth 4 and width 53, with 3 stages (meaning that the neural
network is widened 3 times), which obtained 80.70% validation accuracy, while the best
networks obtained 81.37% accuracy for a depth of 6 and 48 but 4 stages. The conclusion is
the same as for MNIST: increasing the size of the network is not the only efficient way to
improve its accuracy.

We plot histograms of u; and u;|z = 1 on Fig. 10b for pool_type (top) andn_layers
(bottom) like in the previous section. The histograms of n_layers are interesting because
even the histogram of u; does not seem uniform. An explanation could be that configurations

@ Springer



45  Page 20 of 36 Journal of Scientific Computing (2023) 94:45

lead to out-of-memory errors or are so long to train that 1000 other neural networks with
different configurations have already been trained meanwhile. It also explains why its HSIC
is so low. Still, the conclusions that n_layers has a limited impact is valid since there is
no major differences between u; and u; |z = 1.

5.1.3 Bateman Equations

For Bateman equations, mean squared error goes down to 2.90 x 1074, Like for Cifar10,
the histogram of Fig.9b is truncated because many hyperparameter configurations led to
diverging errors. For this problem, learning_rate, optimizer, activations and
n_layer can be considered as impactful. Conditional groups are also listed in “Appendix
A”. Three conditional hyperparameters are important: beta_ 2, the second moment decay
coefficient of Adam and Nadam, nesterowv, that triggers Nesterov’s momentum in SGD
and centered, described previously.

HSIC for n_layers is still the lowest of the significant Sy, y and n_units belongs to
less impactful hyperparameters. We perform the same analysis as for MNIST and Cifar10 and
quote that the best neural network has depth 5 and width 470 while another neural network
of depth 5 and width 62 reaches 3.74 x 10~ validation error.

We plot histograms of u; and u;|z = 1 on Fig.10c for learning_rate (top) and
bias_reg_11 (bottom). Histograms of learning_rate is interesting because this
hyperparameter is continuous so the distribution u;|z = 1 seems more natural. This once
again illustrates the differences of u; and u;|z = 1 for hyperparameters with high and low
Sx;.Y-

5.2 Modification of Hyperparameters Distribution to Improve Training Stability

Up to now, we only considered Y to be the 10% best error percentile, which is natural since
we want to understand the impact of hyperparameters towards good errors. However, HSIC
formalism and our adaptation to hyperparameter analysis allow us to choose any Y. In the
previous section, for Cifar10 and Bateman, we truncated histograms of Fig. 9b because many
hyperparameter configurations led to diverging errors. It is possible to understand why by
choosing Y as the set of the 10% worst errors. Then, HSIC can be applied to assess the
importance of each hyperparameter towards the worst errors.

Figure 11b shows Sx; y comparisons, for Cifar10 and Bateman, when Y is the set of the
10% worst errors. In that case, Sy, y measures how detrimental bad values of x; can be
for the neural network error. For Cifarl0, activation is the main responsible for the
highest errors. If we plot the histogram of activation|Y, we can see that sigmoid is
a bad value in the sense that most of the worst neural networks use this activation function.
If we come back to Y being the set of the 10% best neural networks, we see that none
of the best neural networks have sigmoid as the activation function. By itself, this kind
of knowledge is valuable because it gives insights about hyperparameter’s impact. It also
directly brings some practical benefits: in that case, we could reasonably discard sigmoid
from the hyperparameter space and therefore adapt the distribution of activation to
improve stability. The same reasoning can be applied to Bateman, with x; = optimizer,
for adagrad and rmsprop optimizers.

Note that we could have drawn the previous conclusions by directly looking at histograms
as represented in Fig. 11b and c. However, when the number of hyperparameters grows, the
number of histograms to look at and to visually evaluate grows as well, and the analysis
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Fig. 11 a Sy, y, Y = 10% worst b x;|Y, Y = 10% worst ¢ x;|Y, Y = 10% best. Top: Cifar10. Bottom:
Bateman. a Comparison of Sy; y when Y is the set of the 10% worst errors. b Histogram of x;|Y when Y
is the set of 10% worst errors, with x; = activations for Cifarl0 and Xx; = optimizer for Bateman.
¢ Histogram of x;|Y when Y is the set of the 10% best errors, with x; = activations for Cifarl0 and
X; = optimizer for Bateman

becomes tedious. Thanks to HSIC, we know directly which histograms to look at and how
to rank hyperparameters when it is not visually clear-cut.

5.3 Interval Reduction for Continuous or Integer Hyperparameters that Affect
Execution Speed

One common conclusion of Sy, y values for the last three machine learning problems is
that one does not have to set high values for hyperparameters that affect execution speed,
such as n_units, n_layers, or n_filters, in order to obtain competitive models.
It naturally raises the question of how to bias the hyperparameter optimization towards
such models. Multi-objective hyperparameter optimization algorithms have already been
successfully applied, like in [19] for instance, but these algorithms are black-boxes and
involve tuning additional hyperparameters for the multi-objective loss function.

In our case, we can use information from Sy, y to reduce the hyperparameter space search
in order to obtain more cost-effective neural networks. The most simple way to achieve
that goal is to select values that improve execution speed for hyperparameters which have
low Sy, y values. For MNIST, it would mean for instance to choose n_units = 128, for
Cifarl0, n_layers = 3 or for Bateman, n_units = 32.

However, if all hyperparameters that affect execution speed are important, i.e. they have
high Sy, y value, we may not be able to apply the previous idea. In that case, we can use
HSIC in a different way to still achieve our goal, for integer or continuous hyperparameters
(such asn_layers,n_units, or kernel_size). Note that most of the time, for these
hyperparameters, a too low or high value will increase the error or the execution speed,
respectively. We would like to choose a value which is as low as possible without hurting
the error too much. Suppose that x; = n_layers € {a, ..., b} and that Sy, y is high, so
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that n_layers is among the most important hyperparameters. It is likely that Sy, y is high
because a is too small. One could therefore compute S, |x; efa+c,....b},Y forc € {1, ..., b—a},
starting with ¢ = 1 until Sy, |x;e{a+c,...,b},Y becomes low. Then, hyperparameter n_layers
can be replaced by n_layers|n_layers € {a +c, ..., b}, which has a low HSIC, and
whose value can hence be set to a + c.

To illustrate this, let us come back to Runge data set. We first focus on this example because
we have been able to train n; = 10,000 different neural networks so the methodology can
be tested with limited noise. In Fig. 12, Sx;|x;e{a+c,...,},Y is plotted with respect to ¢, where
X; =n_layers. We see that Sy, |x; e{a+e....,»),Y decreases untiln_layers = 3, after which
the tendency is not statistically significant. Choosing n_layers = 3 makes n_layers
belong to the less important hyperparameters so it is a good trade-off value for execution
speed and accuracy.

We apply this methodology to MNIST, Cifar10, and Bateman problems in Fig. 13. When
plotting these curves, too high values of ¢ have to be discarded since the more c increases, the
less points there are to compute Sy;|x;efa+c,....b},Y- It could explain the strange behavior of
the plots at the right of the axis of Fig. 13, and the widening of error bars forn_layers =5
in Fig. 12.

Note that in Fig. 13, error bars are much larger than in Fig. 12. Indeed, in these cases,
Sx;|x; elate,....p),Y are evaluated with 10 times less points. Hence, one must be careful with
their interpretation. First, we are far from the asymptotical regime under which estimation
error is gaussian for so few estimation points. It explains why error bars can go below 0
whereas the value to estimate is a distance. Therefore, these bars only indicate how spread
the error is. Second, since it turns out that the error is very spread, the trade-off value must
be chosen with caution by taking this statistic into account. In this manuscript, we rely on a
human eye to qualitatively chose this value, but in future work, we should study the use of
statistical tests.

Finally, these plots suggests that we could set n_layers = 3 for MNIST,
kernel_size = 3 for Cifarl0 and n_layers = 3 for Bateman without affecting the
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error too much. Once the hyperparameter space has been reduced to improve neural networks
execution time, it is possible to apply any classical hyperparameter optimization algorithm.

6 Optimization by Focusing on Impactful Hyperparameters

One of the most successful and widely used hyperparameter optimization algorithms is
Gaussian Processes-based Bayesian Optimization, which we denote GPBO by convenience.
However, this algorithm is known to struggle in too high dimensions. In the case of Cifar10,
choosing values for hyperparameters that affect execution time would still lead to a space of
dimension 20, which is quite large to apply GPBO.

In [34], the authors introduce the use of HSIC for feature selection and in [29], HSIC
based feature selection is used in the context of optimization. The idea is to compute Sx; y
for each variable involved in the optimization and to discard low Sy, y variables from it. More
specifically, we fix the discarded variables to an arbitrary value, and then the optimization
algorithm is applied only in the dimension of the high S, y variables.

This methodology is particularly suited to hyperparameter optimization. In this work,
we have emphasized the ability of HSIC to identify the most important hyperparameters.
It allows performing relevant HSIC driven hyperparameter selection, which can overcome
optimization in too high dimensional hyperparameter spaces. We go further and present a
two-step optimization. We optimize the most relevant hyperparameters but also fine-tune
less important hyperparameters in a second optimization step. As a result, the problematic
optimization in high dimension is split into two easier optimization steps:

1. Optimization in the reduced yet impactful hyperparameter space, which has reasonable
dimension. It allows applying GPBO despite the initially large dimension of the hyperpa-

rameter space. At the end of this step, optimal values are selected for the most impactful
hyperparameters.
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2. Optimization on the remaining dimensions. In our case, GPBO can be reasonably applied
in this space, but note that we might have hyperparameter spaces whose initial dimension
is so high that after the first step, the remaining dimensions to optimize could still be too
numerous to perform GPBO. In that case, less refined but more robust hyperparameter
optimization algorithms (like random search or Tree Parzen Estimators [13]) could be
applied, which would not be so much of a problem since remaining hyperparameters are
less impactful.

For the first step, values have to be chosen for less impactful hyperparameters that are not
involved in the optimization. In [29], the authors choose the values yielding the best output
after the initial random search. Here, the value selection method that aims at improving
execution speed, introduced in Sect. 5.3, integrates perfectly with this two-step optimization.
Following this method brings two advantages. First, we can obtain more cost-effective neural
networks if we keep these values through the two optimization step. Second, if we do not care
so much about execution speed but only look for accuracy, still fixing these values during
the first optimization step improves the training speed and thereby global hyperparameter
optimization time.

The rest of the low Sy; y hyperparameters value can be set as those of the hyperparameter
configuration yielding the best error. There is one last attention point: one has to be careful
about interactions between low Sy, y hyperparameters. If two low HSIC hyperparameters x;
and x; are found to interact, like discussed in Sect.4.2, and x; has an impact on execution
speed, the value of x; must be chosen so that value of the pair (x;, X ;) is close to the value of
the hyperparameter configuration of a low error neural network. The two-step optimization
is summarized in Algorithm 2.

Algorithm 2 Two-step Optimization

: Inputs: hyperparameter search space H = X1 X ... X Xy, ng
: Apply Algorithm 1: "Evaluation of HSIC in hyperparameter analysis".
: Perform interval reduction (for cost efficiency and stability), as in Sections 5.3 and 5.2.
: Select values for less impactful hyperparameters that improve execution speed, taking care of interaction,
like discussed in Section 4.2.
:// Step 1:
: Apply GPBO to the most impactful hyperparameters.
1/ Step 2:
: if goal = accuracy and execution speed then
Keep the optimal values of step 1 and the values of less impactful hyperparameters that improve execution
speed. Apply GPBO to the remaining dimensions.
10: else if goal = accuracy only then
11:  Keep the optimal values of step 1. Apply GPBO to the remaining dimensions.
12: end if

AL =

© 0L

We evaluate this two-step optimization on our three data sets. For each of these, we consider
4 baselines. For each of these baselines, we report the fest error (the metric is accuracy for
MNIST and Cifar10 and MSE for Bateman), the number of parameters of the best models,
and their FLOPs.

e Random search: The result of the random search of 1000 configurations plus 200
additional configurations for a total of ny; = 1200 points.

e Full GPBO: Gaussian Processes-based Bayesian Optimization, conducted on the full
hyperparameter space, without any analysis based on HSIC. We initialize the optimization
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Table 4 Results of hyperparameter optimization for random search (RS), Gaussian processes based Bayesian
optimization on the full hyperparameter space (full GPBO) and two-steps Gaussian processes based Bayesian
optimization (TS-GPBO)

Data set Baseline Test metric Params MFLOPs
MNIST RS 98.36 6,267,103 12,709 (x41)
- Full GPBO 98.42+0.05 10,271,367 20,534 (x67)
- TS-GPBO (acc +speed) 98.42+0.02 151,306 307 (x1)
Cifarl0 RS 81.8 99,444,880 1,832,615 (x11)
- Full GPBO 82.73+1.45 71,111,761 1,441,230 (x8)
- TS-GPBO (acc) 82.60+0.58 9,604,539 650,269 (x4)

- TS-GPBO (acc +speed) 79.34£0.15 9,281,258 178,621 (x 1)
Bateman RS 1.99 x 10~4 1,259,140 2516 (x359)

- Full GPBO 2.94+0.42 x10~% 1,588,215 3173 (x453)

- TS-GPBO (acc +speed) 3.49+0.31 x10~* 3291 7 (x1)

For each dataset and each metric, the best result indicates bold

The mean =+ standard deviation across 5 repetitions is displayed for the test metric. For the number of parameters
and FLOPs, the maximum value obtained across repetitions is reported because it illustrates the worst scenario
that can happen for execution speed, and how much our method prevents it

with 50 random configurations and perform the optimization for 50 iterations (enough
to reach convergence).

e TS-GPBO (acc): Two-Step GPBO described in Algorithm 2, with goal = accuracy. HSIC
are estimated using a first random search of n; = 1000 points. Steps 1 and 2 are run for
25 iterations.

e TS-GPBO (acc + speed): Two-Step GPBO described in Algorithm 2, with goal =accuracy
and execution speed.

Random search (ran using 100 parallel jobs for MNIST and Bateman and 24 for Cifar10)
took between 2 and 3 days depending on the data set, full GPBO between 3 and 4 days and
TS-GPBO between 3 and 4 days as well (2-3 days for the initial random search and 1 day
for the two steps of GPBO). Time measure is coarse because not all the training has been
conducted on the same architectures (Sandy Bridge CPUs, Nvidia Tesla V100, and Nvidia
Tesla P100 GPUs), even within the same baseline, for cluster accessibility reasons.

We chose the number of total model evaluations for each baseline to obtain approximately
the same total execution time. The differences between the number of evaluations, despite
identical total execution time, can be explained by different factors. First, the random search
can be fully executed in parallel, while GPBO is sequential. Second, step 1 of TS-GPBO
always chooses values for non-optimized hyperparameters that improve execution speed and
training time. As a result, step 1 is quite fast. Besides, experiments show that step 2 usually
converges faster, in terms of the number of evaluations, than full GPBO to the reported
minimum, perhaps because the optimal values found during step 1 make step 2 begin close
to an optimum. The results of 5 repetitions (except for random search) of each baseline can
be found in Table4.

Results show that except for Cifar10, TS +GPBO yields very competitive neural net-
works while having far fewer parameters and FLOPs. For MNIST, TS + GPBO model has
~ 66 and 41 times fewer parameters and FLOPs than full GPBO and random search. For
Bateman, these factors are 482 and 380. An oversized initial hyperparameter search space
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could explain such a high factor. Still, a reasonable size for the search space cannot be found
a priori, and our method makes hyperparameter optimization robust to such bad a priori
choices. Note that for these cases, we only reported results of TS-GPBO (accuracy + speed)
because the results of this baseline were already satisfying, and TS-GPBO (accuracy) did
not bring significant improvement. For the particular case of Cifarl0, TS-GPBO (accu-
racy) and (accuracy +speed) both find a model which has 11 and 9 times fewer parameters
than random search and full GPBO. TS-GPBO (accuracy) finds a model with ~ 3 and
2 fewer FLOPs than random search and full GPBO while these factors are 10 and 8 for
(accuracy + speed). Full GPBO and TS-GPBO (accuracy) achieve comparable accuracy, but
the standard deviation for full GPBO is 2.5 times higher than for TS-GPBO (accuracy),
which demonstrates the robustness of TS-GPBO (accuracy). Even if execution time is not
an explicitly desired output of TS-GPBO (accuracy), the first step of TS-GPBO, which
selects values that improve execution time, seems to bias the optimization towards more
cost-effective models, as the final number of parameters and FLOPs shows. All these results
have been allowed thanks to information given by HSIC analysis. Hence, TS-GPBO outputs
competitive and cost-effective models but also grants a better knowledge of hyperparame-
ters interaction in these machine learning problems, as opposed to random search and full
GPBO.

7 Discussion and Perspectives

Many techniques have already been introduced to handle hyperparameter optimization,
but they often suffer from a lack of interpretability and interactivity. In this work,
we tackled these problems by proposing an HSIC based goal-oriented global sensitiv-
ity analysis applied to hyperparameter search spaces. We showcased how we can use
this information by improving the stability of training instances and the cost efficiency
of trained networks. We also introduced an interpretable hyperparameter optimization
methodology that yields competitive and cost-effective neural networks based on feature
selection.

7.1 Impact for Scientific Machine Learning

These findings are of interest to the machine learning community. Though the presented
methodologies can be taken as contributions by themselves, they should also be understood
as demonstrations that HSIC based goal-oriented global sensitivity analysis is interest-
ing and valuable for hyperparameter optimization. In the end, an important outcome
of this work was to make an insightful tool, HSIC, ready for use in hyperparameter
optimization.

This work also impacts scientific computing since it tackles the trade-off between
accuracy and cost-efficiency of neural networks. Indeed, we obtained lighter networks
without significantly affecting the error, which is the ideal goal for high-performance
computing.

7.2 Other Comments

Other points can be made regarding the presented results and the potential follow-up work.
They can be grouped into the following topics:
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Hyperparameters Modeling Choice HSIC is a powerful tool that is widely used for sen-
sitivity analysis as a dependence measure. Its application to hyperparameter optimization
required some work, especially regarding the complex structure of hyperparameter space.
To achieve this goal, we made some modeling choices, such as applying ®y; to map hyper-
parameter x; to a uniform random variable. The good results obtained in Sect.6 validate
not only the usage of information given by HSIC for hyperparameter analysis but also this
modeling choice.

Automating Two-Step Gaussian Process-Based Bayesian Optimization In this work, we
presented methodologies for exploiting HSIC information that involved human intervention.
Indeed, someone has to actively decide which hyperparameter deserves to be considered
as more or less impactful. Nevertheless, one advantage of HSIC is that it is a scalar metric.
One could construct an HSIC based hyperparameter optimization by setting a threshold above
which hyperparameters are considered impactful. It would lead to an end-to-end automatic yet
interpretable hyperparameter optimization algorithm. Though [29] use the idea of a threshold,
its application to hyperparameter optimization has not been studied in this paper and could
be part of future works.

Other Dependence Measures In this work, we used HSIC because it is a popular and
flexible dependence measure. Our derivations for its application to hyperparameter analysis
still hold for any other dependence measure sharing the same properties as HSIC, though
studies of different dependence measures is beyond the scope of this paper.

Hyperparameter Optimization Speed Up We presented some ways of using HSIC in
hyperparameter optimization, but this paper mainly emphasized the possibility of exploiting
it in order to find lighter models. We are aware that execution speed is not always a goal for
machine learning practitioners. Still, machine learning practitioners are always concerned
about training speed. The first step of TS-GPBO (accuracy) demonstrated the possibility
to use HSIC to improve training speed without hurting the final accuracy, so even if final
execution speed is not a goal, TS-GPBO made it interesting to use HSIC for that purpose. It
would even be possible to go further and to apply parallel GPBO like described in [12], or to
use Hyperband on the initial random search since HSIC computation only relies on the error
of the p-% best neural networks.

Further Execution Time Improvement One advantage of execution time improvement
obtained thanks to HSIC is that it only relies on choices for the conception of the neural
network. Therefore, additional improvements could be made by applying other techniques
like quantization, weights pruning, or multi-objective hyperparameter optimization.

8 Conclusion

Hyperparameter optimization is a very important step of machine learning applications,
ordinarily conducted in a black-box fashion. Using an approach based on goal-oriented
global sensitivity analysis, we show that we can make hyperparameter optimization more
interpretable. In particular, we adapt Hilbert Schmidt Independence Criterion, a statisti-
cal dependence measure used in sensitivity analysis, to hyperparameter spaces that can
be complex and awkward due to the different nature of hyperparameters (continuous
or categorical) and their interactions and inter-dependencies. Its use for hyperparame-
ter analysis is demonstrated on various case studies. In particular, it allows constructing
an original and interpretable two-step hyperparameter optimization methodology based
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on feature selection that improves neural networks’ execution speed as well as test
error.
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Appendix A Hyperparameters Spaces

In this section, we describe hyperparameters spaces used for each problem in this chapter.
Note that hyperparameter n_seeds denotes the number of random repetitions of the training
for each hyperparameter configuration. If a conditional hyperparameter X ; is only involved
for some specific values of a main hyperparameter X, it is displayed with an indent on tab
lines below that of X;, with the value of X; required for X ; to be involved in the training.

A.1 Runge and MNIST

For Runge and MNIST, only fully connected Neural Networks are trained, and the width
(n_units) is the same for every layer (Tables5).
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Table 5 Hyperparameters values for Runge & MNIST
Hyperparameter Type Values for Runge Values for MNIST
n_layers Integer ef{l,...,10} Same
n_units Integer ef{7,...,512} e {128, ..., 1500}
activation Categorical elu, relu, tanh or Same

sigmoid
dropout Boolean trueor false Same
yes:dropout_rate Continuous € [0, 1] Same
batch_norm Boolean trueor false Same
weights_reg_ 11 Continuous e[l x 10*6, 0.1] Same
weights_reg 12 Continuous e[l x 10_6, 0.1] Same
bias_reg_11 Continuous el x 10*6, 0.1] Same
bias_reg_ 12 Continuous el x 10*6, 0.1] Same
batch_size Integer efl,..., 11} e{l,...,256}
loss_function Categorical L, error or Ly error L, error or

crossentropy

optimizer Categorical adam, sgd, rmsprop or Same

adagrad
n_seeds Integer e{l,...,40} e{l,...,10}

Conditional Groups: (see (iii) of Sect.4.3) Gp and Garopout_rate

A.2 Bateman

For Bateman, only fully connected Neural Networks are trained, and the width (n_units)
is the same for every layer (Table6).
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Table 6 Hyperparameters values for Bateman
Hyperparameter Type Values for Bateman
n_layers Integer e{l,...,10}
n_units Integer e{7,...,512}
activation Categorical elu, relu, tanh or
sigmoid
dropout Boolean trueor false
yves:dropout_rate Continuous e [0, 1]
batch_norm Boolean trueor false
learning_rate Continuous e [1x 107, 1x 10’2]
weights_reg_ 11 Continuous e[l x 10_6,0.1]
weights_reg 12 Continuous e[l x 10*6,0.1]
bias_reg_11 Continuous €[l x107°,0.1]
bias_reg_12 Continuous €[1x107%,0.1]
batch_size Integer e {l1,...,500}
loss_function Categorical L, error or L error
optimizer Categorical adam, sgd,
rmsprop,
adagrad or
nadam
adam:amsgrad Boolean trueor false
adam, Continuous € [0.8,1]
nadam:lst_moment_decay
adam, Continuous € [0.8, 1]
nadam: 2nd_moment_decay
rmsprop:centered Boolean trueor false
sgd:nesterov Boolean trueor false
sgd, Continuous € [0.5,0.99]
rmsprop :momentum
n_seeds Integer e{l,...,10}

Conditional groups: (see (iii) of Sect.4.3) Gy, gdropoutfrate’ gamsgracL Geentered,

Gnesterovs Ymomentum and g( 1st_moment,2nd_moment)

A.3 Cifar10

For Cifar10, we use Convolutional Neural Networks, whose width increases with the
depth according to hyperparameters stages and stage_mult. The first layer has width
n_filters,andthen, stages — | times, the network is widen by a factor stage_mult.
For instance, a neural network withn_filters =20,n_layers = 3, stages = 3 and
stage_mult = 2 will have a first layer with 20 filters, a second layer withn_filters x

stage_mult = 40 filters, and a third layer withn_filters x stage_multSta9es

60 filters (Table 7).
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Table 7 Hyperparameters values for Cifar10

Hyperparameter Type Values for Cifar10
n_layers Integer e{3,...,12}
n_filters Integer e {16, ..., 100}
stages Integer e {l1,4}

stage_mult Continuous e[1,3]
kernel_size Integer e {l1,5}

pool_size Integer € {2,5}

pool_type Categorical max or average
activation Categorical elu, relu, tanhor sigmoid
dropout Boolean trueor false
yes:dropout_rate Continuous e [0, 1]

batch_norm Boolean trueor false
learning_rate Continuous € [1 x 1070, 1 x 1072]
weights_reg 11 Continuous e[l x 1070, 0.1]
weights_reg 12 Continuous e[l x 10*6, 0.1]
bias_reg_11 Continuous € [1 x 107, 0.1]
bias_reg_12 Continuous e[l x 10_6, 0.1]
batch_size Integer e {10,..., 128}
loss_function Categorical L, error or crossentropy
optimizer Categorical adam, sgd, rmsprop, adagrad or nadam
adam:amsgrad Boolean trueor false

adam, nadam:lst_moment_decay Continuous € [0.8, 1]

adam, nadam:2nd_moment_decay Continuous € [0.8,1]

rmsprop:centered Boolean trueor false
sgd:nesterov Boolean trueor false
sgd, rmsprop:momentum Continuous € [0.5,0.99]
n_seeds Integer ef{l,...,10}

Conditional groups: (see (iii) of Sect.4.3) Gy, gdropoutfrates gamsgrady Geentered,

Gnesterovs Imomentum and

g(l st_moment,2nd_moment)

Appendix B HSICs for Conditional Hyperparameters
B.1 MNIST
For MNIST, there is only one conditional hyperparameter, dropout_rate, so only one

conditional group to consider in order to assess the importance of conditional hyperparameters
(Fig. 14).
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Fig. 15 a Gamsgrad- b Y(1st_moment,2nd_moment) € Gcentered @ Garopout_rate f Gmomentum &
Gnesterov HSICs for conditional groups of Bateman hyperparameter analysis. a amsgrad is not impactful
(it is in the estimation noise), b 1st_moment is not impactful but 2nd_moment is the fourth most impact-
ful hyperparameter of this group, ¢ centered is the second most impactful hyperparameter of this group,
d dropout_rate is not impactful, e momentum is not impactful, f nesterov is the most impactful
hyperparameter of this group
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to assess their importance.

B. 3 Cifar10

For Cifarl0O, there are seven conditional hyperparameter, amsgrad, lst_moment
(beta_1), 2nd_moment (beta_2), dropout_rate, centered, momentum, and
nesterov. Six conditional groups, specified in Fig. 16, have to be considered in order
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Fig. 16 a Gamsgrad b Y(1st_moment,2nd_moment) € Gcentered d Garopout_rate € Gmomentum f
Gnesterov- HSICs for conditional groups of cifar10 hyperparameter analysis. a amsgrad is not impactful, b
1st_moment, 2nd_moment are not impactful, ¢ centered is the third most impactful hyperparameter of
this group, d dropout_rate is not impactful, e momentum is not impactful, f nesterov is not impactful

to assess their importance.

Appendix C Construction of Bateman Data Set

Bateman data set is based on the resolution of the Bateman equations, which is an ODE
system modeling multi species reactions:

(1) = Er(ﬂ(t)) - )(t), with initial conditions (0) = p,,
and p € RHM, X, € R¥*M Here, f : (39,t) — 1(t), and we are interested in 5(z),
which is the concentration of each of the species Sg, with k € {1, ..., M}. For physical

applications, M ranges from tens to thousands. We consider the particular case M = 11.
Matrix ):,(n(t)) depends on reaction constants. Here, 4 reactions are considered and each
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reaction p has constant o,.

1) : 81+ 8 — 83+ 84+ S + 87,
2): 853+ 84 = S+ Sg+ Si1,

(3) 82+ 811 —> S3+ S5+ S,

@) 283+ 811 —> 2+ S5+ Se + Sio,

with 0y = 1, 02 = 5,03 = 3 and 04 = 0.1. To obtain X, (3()), the species have to be
considered one by one. Here we give an example of how to construct the second row of
2, (n(t)). The other rows are built the same way. Given the reaction equations :

02 = —o1M1n2 + 02103N4 — O3M2N1L + O4N3INL,

because S, disappears in reactions (1) and (3) involving S; and S1; as other reactants at rate
o1 and o3, respectively, and appears in reactions (2) and (4) involving S3, S4 and S3, S;; as
reactants, at rate o, and o4 respectively. Hence, the second row of X, (n(t)) is

[0, —o1n1, 0, o213, 0, 0, 0, 0, 0, 0, —o3m2 + 0413,

with (¢) denoted by 5 to simplify the equation and »; the i-th component of 5. To construct
the training, validation and test data sets, we sample uniformly (3, t) € [0, 11'2 x [0, 5]
130000 times. We denote these samples (1, t); fori € {1, ..., 130000}. Then, we apply a
first order Euler solver with a time step of 1073 to compute f ((mg, 1)i). As aresult, neural
network’s input is (1, ¢) and neural network’s output is f ((5¢, t)).
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