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Abstract

Robust optimization strategies typically aim at minimizing some statistics of the uncertain objective function and can
e expensive to solve when the statistic is costly to estimate at each design point. Surrogate models of the uncertain
bjective function can be used to reduce this computational cost. However, such surrogate approaches classically require a
ow-dimensional parametrization of the uncertainties, limiting their applicability. This work concentrates on the minimization
f the quantile and the direct construction of a quantile regression model over the design space, from a limited number of
raining samples. A Bayesian quantile regression procedure is employed to construct the full posterior distribution of the quantile

odel. Sampling this distribution, we can assess the estimation error and adjust the complexity of the regression model to the
vailable data. The Bayesian regression is embedded in a Bayesian optimization procedure, which generates sequentially new
amples to improve the determination of the minimum of the quantile. Specifically, the sample infill strategy uses optimal points
f a sample set of the quantile estimator. The optimization method is tested on simple analytical functions to demonstrate its
onvergence to the global optimum. The robust design of an airfoil’s shock control bump under high-dimensional geometrical
nd operational uncertainties serves to demonstrate the capability of the method to handle problems with industrial relevance.
inally, we provide recommendations for future developments and improvements of the method.

c 2020 Elsevier B.V. All rights reserved.

eywords: Robust design; Optimization under uncertainty; High dimensional problems; Bayesian quantile regression; Aerodynamics;
omputational Fluid Dynamics

1. Introduction

The use of robust optimization techniques is increasing in popularity to come up with configurations less
ensitive to aleatory uncertainties. Indeed, most engineering systems are non-deterministic because of the presence
f manufacturing tolerances, random fluctuations in the environment, and uncertainty in operational conditions [1].

Robustness can be defined as the potential for success under varying circumstances or scenarios [2]. A robust
esign leads to future flexibility and cost savings [3]. Another definition is related to consistency and trust. Under
erturbations, a robust product is expected to perform consistently and is to be trusted. The first step to reach a
obust design is to understand the potential sources of variability. Once they are understood, these can be integrated
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into the design process from an early stage. A complete overview on robust optimization techniques can be found
in [1,4].

The functional or Quantity of Interest (QoI) to optimize is then not deterministic, but becomes a random
variable. As a result, the formulation of the optimization problem must account for the stochastic nature of the
QoI. Classically, one considers some statistics of the QoI. For example, the mean value or a linear combination of
the mean and standard deviation of the QoI defines objective functions for optimization under uncertainty [5].
Another possibility is to determine the design such that the probability distribution function (pdf) of the QoI
matches a prescribed target pdf [6]. Alternatively, the minimization of a prescribed quantile of the QoI is a flexible
approach often chosen in engineering problems [7–9], because it ensures a best minimal performance with controlled
probability (design requirements).

Fig. 1 illustrates different robust optimization strategies. The figure shows the QoI (objective function) as a
function of the design variable x . The continuous line corresponds to the deterministic QoI in the absence of
uncertainty. In the presence of environmental, operational, or manufacturing uncertainties, the QoI exhibits a
variability illustrated by the shaded areas corresponding to the 50 and 90% confidence intervals. The deterministic
optimum design x∗

1 yields an uncertain QoI with high variability and poor expected value, as depicted by the
extent of the confidence intervals and the density. The optimal design denoted x∗

2 has the lowest QoI expectation
but is affected by high variability. In contrast, the design x∗

3 corresponding to the minimization of the QoI standard
deviation exhibits a low variability but poor performance. Finally, the optimization of the 95% quantile in x∗

4 ensures
minimal performance for 95% of the events.

Fig. 1. Comparison between deterministic and robust optimal designs.

This work focus on quantile of robust optimization problems formulated as follows: Let x be the design variables
and Y (x, θ) ∈ R the random QoI, which depends on x ∈ Ω and the random event θ ∈ Θ . The objective is to
minimize the τ -quantile of Y , for some τ ∈ (0, 1):

x∗
= arg min

x∈Ω
qτ (Y (x, ·)) . (1)

In particular, we are interested in solving efficiently problem (1) when Y (·, θ) involves high dimensional stochastic
parametrizations or is not even explicitly given.

In order to make robust design feasible for practical applications involving expensive simulations, the devel-
opment of efficient methods is essential [1,10]. Traditional approaches for robust design use surrogate models to
approximate the random QoI Y (·, θ). These surrogate models usually consist of Polynomial Chaos (PC) Expan-
ions [11–13] or Gaussian Processes (GP) [5,8,14]. Their construction requires the evaluation of the deterministic full
rder model at suitable training points. These surrogates can be extensively resampled, at a low computational cost,
o estimate the desired quantile through the inverse empirical cumulative distribution function. If the randomness is
2
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independent of the design variable, it is even possible to construct a global surrogate in the stochastic and design
spaces (Ω × Θ) [15].

A key feature of PC and GP surrogates is that they need a parametrization for the uncertainty sources, classically
using a finite set of independent random variables. When dealing with problems requiring a high-dimensional
parametrization, such as for uncertainty induced by a random field, the number of training samples to construct
accurate high-dimensional surrogates increases very quickly. It can become prohibitive unless particular structures
can be exploited. The collaborative EU research project UMRIDA [16] (Uncertainty Management for Robust Design
in Aeronautics, 2013–2016), tackled robust design under a large number of independent uncertainties. In this
project, problems with more than 10 to 20 independent uncertain parameters were considered high dimensional
and treated by dimensionality reduction techniques such as Karhunen–Loeve expansions [17,18], and sparse
Polynomial Chaos [19,20] expansions. The construction of surrogates in high dimensions can also benefit from the
gradients, estimated, for instance, by adjoint methods [21]. Dimensionality reduction techniques such as Support
Vector Clustering [22] and Principal Component Analysis in combination with surrogate models [23] have been
proposed for uncertainty quantification under high dimensional uncertainty sources. All these methods based on
dimensionality reduction of the stochastic space are unable to deal with situations where such a reduction is not
feasible or effective. This limitation makes these approaches unfeasible when dealing with complex and truly
high-dimensional uncertainties. Also, the surrogate models are not suitable for non-parametric uncertainties, i.e.,

on-amenable to a parametrization.
Another possibility when dealing with uncertainty quantification is the use of variable fidelity methods in

ombination with Multi Level Monte Carlo approaches [24,25]. However, several levels of fidelity for a given
lack box problem are not always available, and the number of samples required to accurately compute statistics
or large scale industrial problems is still very large. Also, the use of importance sampling [26] can help to reduce
he computational burden associated with stochastic simulations. These sampling methods still need to be integrated
ith traditional optimization approaches to perform robust design making the optimization expensive.
The objective of this paper is then to develop an efficient approach for quantile optimization, that is insensitive to

he structure and dimensionality of the uncertainty and even able to handle non-parametric uncertainties. To this end,
e propose to construct a surrogate directly for the quantile as a function of the design variables, by-passing the es-

imation of a surrogate for the random objective function. To avoid any explicit parametrization of the uncertainties,
e rely only on samples of the random objective function. This feature is handy when dealing with high-dimensional
r non-reducible uncertainty sources. Our approach exploits the fact that sampling-based methods, such as Monte
arlo, are typically insensitive to the complexity of the random source and are therefore tractable in high-
imensional problems. Further, in our context of robust optimization, smooth dependencies with the design variables
f the quantile can be exploited in the surrogate construction, sampling the stochastic and design spaces jointly.

In the following, we first propose a regression approach to estimate the quantile surrogate globally over the
hole design space. We propose an original approach to estimate the quantile prediction error. We exploit this error

stimation to derive a sequential construction approach in order to improve the accuracy of the quantile surrogate.
he approach selects the design points where to collect new samples of the objective function. This strategy is
dapted to the robust optimization problem, focusing the computational effort on the estimation and determination
f the optimum of the quantile in the design space.

The organization of the paper is as follows. In Section 2, we introduce the quantile regression, which consists
f a semiparametric expression of the quantile as a function of the design parameters derived from a samples set
f the random function Y (x, θ). Section 3 constitutes the core of the methodological contributions of the work. In
ection 3.2 a Bayesian formulation of the quantile regression problem is introduced, and we derive sampling strate-
ies for the quantile estimator in order to estimate its error. A Bayesian sequential strategy is proposed in Section 3.3
or the optimization of the quantile. The optimization mostly uses the sampling of the quantile estimator to generate
ew candidates of the optimum point and infill the design domain. The Bayesian optimization methods are applied
n one and two-dimensional test functions in Section 4 and to a realistic aerodynamic shape optimization problem
n Section 5. Finally, Section 6 reports major conclusions of the work and recommendations for future works.

. Quantile regression

This section concerns the quantile regression method, which builds a deterministic model of the τ -quantile qτ (x)
of Y (x), where x ∈ Ω is the design variable. Section 2.2 defines the quantile of a random variable Y (non-indexed
3
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on x) and introduces its empirical estimation using the loss function (6). The estimation is further extended to
Y conditioned on x , before introducing a discretization in x in Section 2.3. Finally, Section 2.4 discusses some
practical aspects of the construction, emphasizing the selection of the size of the set of regression points. The
material presented in the section will be extended in Section 3 to derive a Bayesian formulation of the quantile
regression and exploit this formulation to quantile optimization.

2.1. Motivation

Quantile regression, introduced in the 70s by Koenker and Basset [27], provides a richer view of applications
compared to conditional mean models such as least squares regression [28]. While most regression methods focus
on the mean of the response variable, it is possible to look at other statistics of the distribution.

According to Mosteller and Tukey [29], traditional regression estimates averages of the distributions at a set
of points. However, it is also possible to obtain different regression curves corresponding to the percentage point
of the distribution. The least-squares regression gives an incomplete picture of the distribution, where the quantile
regression provides a general technique to estimate families of conditional quantiles.

The use of the quantile as an estimate of uncertainty is very useful in engineering and design optimization. As a
result, the quantile regression is an appealing approach to predict any quantile as a function of the design parameters.
The approach is also independent of the sources of uncertainty and does not require any parametrization.

2.2. Quantile estimation

We denote FY : R ↦→ [0, 1] the Cumulative Distribution Function (CDF) of a real-valued random variable Y (θ ):

FY (y) = P(Y ≤ y). (2)

The CDF is right continuous, such that, for any τ ∈ (0, 1), the τ -quantile of Y can be defined as

qτ = F−1
Y (τ ) = inf {y|FY (y) ≥ τ } . (3)

In particular q0.5 is called the median of the distribution. A quantile can be estimated from the Empirical Cumulative
Distribution Function (ECDF) [30] from a sample set Y = {yi , i = 1, . . . , NY} of NY random sample points of Y .
The ECDF of the sample set is given by

F̂Y,NY (y) =
# of samples ≤ y

NY
=

1
NY

NY∑
i=1

Iy(yi ), Iy(y′) .
=

{
1, y′

≤ y
0, otherwise.

(4)

The ECDF converges to FY as NY → ∞ and can be used in (3) to obtain the empirical estimate of qτ .
An alternative approach consists in estimating the quantile as the minimizer of a loss function, specifically, the

optimal point estimator of the asymmetric linear loss [28] based on the check function ρτ :

ρτ (u) = (τ − I0(u)) u =
|u| + (2τ − 1)u

2
. (5)

he loss function of Y is

Lτ (q|Y) =

NY∑
i=1

ρτ (yi − q) =

NY∑
i=1

(τ − I0(yi − q)) (yi − q), (6)

nd the optimal estimator is

q∗

τ = arg min
q∈R

Lτ (q|Y). (7)

The loss function in (6) is the sum of asymmetrically weighted absolute residuals [31]. Its minimum coincides
ith the classical empirical quantile estimator associated with the ECDF. Roughly, the loss function penalizes a
alue of q such that the fraction of samples in Y greater (resp. smaller) than q exceeds τ (resp. 1 − τ ). Absolute
esiduals are used to improve the quality and reliability of quantile estimator by preventing high sensitivity to outliers
nd dominance of extreme values |q − y | in the loss.
i

4
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The estimation above can be extended to the case where Y is conditioned on x ∈ Ω , for instance the design
variables of the optimization problem. In this case, the conditional CDF is FY (y|x) and the τ -quantile also becomes
a function of x ,

qτ (x) = F−1
Y (τ |x). (8)

he estimation of qτ (x) is classically restricted to a parametric family involving some parameters ω. Further, the
ample set Y consists now in NY couples (xi , yi ) where yi is drawn from the CDF conditioned on x = xi , that
s yi ∼ FY (y|xi ). The minimization of the loss function translates to the determination of the τ -dependent optimal
arameters ω∗

τ , such that

ω∗

τ = arg min
ω

n∑
i=1

ρτ (yi − q(xi |ω)) , (9)

nd the estimator is finally q∗
τ (x) = q(x |ω∗

τ ). In the following section, we introduce a particular form to express
(x |ω).

.3. Quantile discretization

Traditionally, multiple linear regression (q(x |ω = (α, β)) = α + β · x) have been used to estimate conditional
uantiles [32]. However, more complex models are often necessary to capture real-world complexities and deal with
on-linear dependencies. Among others, polynomial and Radial Basis Functions (RBF) are popular approximation
ethods. To remain as general as possible, we shall assume the following generic form for the quantile model,

q(x |ω) =

NX∑
j=1

ω jφ j (x), (10)

here φ j=1,...NX (x) are given regressors and the ω j=1,...,NX are the parameters of the quantile regression. In the
ase of RBF models, one uses a set X .

= {x̃ j , j = 1, . . . , NX } of control points in Ω , and defines

φ j (x) .
= φ(|x − x j |), j = 1, . . . , NX ,

here |x − x ′
| denotes the Euclidean norm and φ : R+ ↦→ R is a suitable kernel function. If the value of qτ (x) was

known or could be estimated at selected points, the vector of parameters ω = (ω1 · · · ωNX ) could be determined by
solving a standard regression problem, such as a least-squares minimization problem.

In the present situation, the quantile values are unknown and must be estimated from the sample set Y . The
ector of optimal parameters ω∗

τ is the minimizer of (9),

ω∗

τ = arg min
ω∈RNX

ρτ (y − [Φ]ω) , (11)

where y = (y1 . . . yNY ), [Φ] ∈ RNY×NX is the matrix with entries [Φ]i j = φ j (xi ), and the application of
the checkfunction on a vector amounts to the sum of the checkfunctions over all the components of the vector
(ρτ (y) =

∑
i ρτ (yi )). The estimator of the quantile can be recast in

q∗

τ (x) =

NX∑
j=1

(ω∗

τ ) jφ j (x) = Φ(x)T ω∗

τ , (12)

where Φ(x) = (φ1(x) · · · φNX (x))T is the vector of regressors evaluated at x ∈ Ω .
In the following, we rely on a RBF approximation corresponding to

φ j (x) = φ(|x − x j |), φ(r ) = r2 log r.

This particular kernel was proposed by Duchon [33] in the context of Thin-Plate Splines (TPS) models. The complete
TPS model combines a multi-linear regression with the RBF approximation. Here, we only retain the RBF part to
keep the model simple.

A detailed analysis of the RBF approximation error can be found in [34]. In particular, the approximation error

depends on the density of sampling points x j . We stress that the following developments are not dependent on

5
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the approximation method in x of the quantile, provided that it can be recast as in (12). In particular, instead of
RBF, one may prefer to use Gaussian Processes models or regression in a polynomial or other finite-dimensional
functional space.

2.4. Practical aspects

The estimation of the conditional quantile involves two sets, one (Y) for the sample points of conditional random
variable Y (θ |x), and one (X ) containing the control points of the quantile regression. When these two sets are fixed,
he optimal parameters ω∗

τ of the quantile are computed solving the minimization problem (11). In this work, we rely
n a Differential Evolution (DE) [35] algorithm to compute the optimal parameters. Differential Evolution is a global
ptimization strategy based on genetic algorithms. A population with size npop = 10NX was used successfully in the

examples presented in this paper. The convergence of the algorithm typically requires a few hundreds of iterations
(generations). The resulting computational cost remains acceptable because of the fixed location of the control and
sample points, so the matrix [Φ] in (11) can be evaluated once during the optimization procedure.

More critical is the construction of the sample sets Y and X . Concerning Y , it is clear that the sample points xi

should cover well the domain Ω for a good approximation of the quantile at all x ∈ Ω . This observation suggests
a sampling strategy that maximizes the covering of Ω , such as low discrepancy sequences with optimal infilling
properties. In this work, we take advantage of the simple structures of the domains Ω considered (hyper-rectangles)
and rely on Sobol sequences [36] to generate the sample points xi . Then, at each sampled point xi , a single sample
yi is drawn from Y (xi , θ). Note that multiple random replications of Y (xi , θ) could be considered for the same
xi , thus constituting a stratified sample set Y; however, this approach would not produce better estimates of the
quantiles and would not be optimal.

Regarding the set of control points, X , one could consider using the set, or a subset, of point xi in Y . However,
the regression method described above uses control points x̃ j that are not necessarily coinciding with sample

oints xi , and we shall rely on distinct sets of points, for the data and the quantile discretization. The subsequent
xtension of the quantile regression method to the robust optimization problem motivates the use of distinct sets of
oints. The estimation of the quantile and the optimization are two distinct tasks which, although related, leads to
ifferent sequential infilling strategies for X and Y . These strategies will be detailed later, and we discuss here the
nitialization of X , which follows another independent Sobol sequence of size NX .

The size NX of X must be specified and is crucial to obtain an accurate estimation of the quantile. A large number
NX of control points offers a better representation of the quantile but can induce over-fitting when NX is too large
relative to the sample set size of data (NY ). In this situation, the estimator becomes sensitive to the data in Y . On the
other hand, a lower number of control points will not be able to capture the details of the quantile adequately and
will produce too smooth estimators with lesser accuracy. This is the well-known bias–variance trade-off. To tackle
the issue of selecting the number of control points, we propose to follow a classical K -fold Cross-Validation (CV)
method. In the CV method, Y is first partitioned into K > 1 subsets Y1, . . . ,YK with comparable size ≈ NY/K .
The quantile is then estimated on the reduced sample set Y \ Yr , yielding the loss Lr = Lτ (q∗

τ |Yr ) associated to
the left-out subset Yr (see (9)). The consolidated CV-loss L(X ) .

=
∑K

r=1 Lr characterizes the loss associated to
X . This procedure can be repeated for a sequence of nested sets X l

⊂ X l+1
⊂ . . . , obtained by continuing the

constitutive Sobol sequence, until the cross-validation loss L(X l) starts to increase. The size NX
l

= |X l
| giving

the lowest CV-loss is finally considered as the best trade-off. In practice, we use K = 10 cross-validation folds and
enrichment of just one new control point from X l to X l+1.

3. Bayesian optimization strategy

3.1. Motivation

The quantile regression method described in the previous section provides an estimator q∗
τ (x) of the τ -quantile

of Y (x, θ) from a sample set of observation Y . This estimator can substitute the true quantile to solve the robust
optimization problem, that is solving

x̂∗
= arg min q∗

τ (x), q∗

τ (x) = q(x |ω∗), (13)

x∈Ω

6



C. Sabater, O.L. Maı̂tre, P.M. Congedo et al. Computer Methods in Applied Mechanics and Engineering 376 (2021) 113632

o
o
s

q
a
s
s

3

r
i
b
m
s
s
p
a

l
e
f

p
t
k

3

t
c

t
t
fi
q
r

T
u
c

where ω∗ is the minimizer of the loss function associated to Y . To obtain a correct approximation of the exact
ptimum, through this procedure, one needs a sufficiently accurate estimation of the quantile. Further, as the location
f the optimum is unknown, the quantile must be accurately estimated for all x ∈ Ω , a task that would demand a
ubstantial sample set Y , in particular for τ (1 − τ ) → 0.

This observation motivates the development of a Bayesian optimization procedure, where the estimation of the
uantile is sequentially improved only in areas of interest in Ω that are susceptible to contain the optimum. Such
n approach requires two main ingredients: a measure of the local error on the quantile estimation and infilling
trategies to propose new estimations of Y in order to improve the estimation of the optimum x∗. The rest of the
ection concerns these two aspects, while the optimization procedure is discussed later.

.2. Bayesian quantile regression

We start by focusing on the characterization of the error of the estimator q∗
τ (x). We remark that this estimator is

andom, as it uses a random sample set Y . An immediate idea to assess the quality of q∗
τ (x) would be to measure

ts variance with respect to the sample set. Estimating V
(
q∗

τ

)
by replicating Y is not considered as a viable option,

ecause of its computational cost. Characterizing the variability of the estimator by Bootstrapping and sub-sampling
ay be feasible approaches, not requiring new evaluations of Y (x, θ). However, the complete construction of the

ample estimator would demand solving multiple optimization problems, for the optimal parameters ω∗
τ of each

ubsample or bootstrap replica of Y proposed. Even if these optimizations can be carried out in parallel, these
rocedures would consume significant computational resources if the minimization of the loss function is difficult,
nd many samples are needed to characterize the variance of the estimator.

These considerations lead us to propose a more direct approach that does not require the minimization of the
oss function. The proposed approach considers that the model parameters ω defining the estimator are random and
quipped with a joint probability density function conditioned on the sample set Y . In order to derive an expression
or this joint distribution, we rely on the Bayes theorem:

pτ (ω|Y) =
Lτ (Y|ω) p(ω)

pτ (Y)
. (14)

The Bayes theorem states that the posterior (after observation of the sample set Y) distribution pτ (ω|Y) of the
arameters of the quantile estimator, is equal to the product of the likelihood Lτ of the sample set and the prior of
he parameters p(ω), divided by the evidence or absolute probability of the sample set. The critical point here is that
nowing the posterior distribution of ω, we have a complete probabilistic description of the τ -quantile estimator.

.2.1. Asymmetric Laplace distribution
The likelihood Lτ (Y|ω) measures the probability of the sample set Y assuming that Y has a τ -quantile following

he model with parameters ω. The main difficulty in deriving an appropriate likelihood is that we do not know the
onditional distribution of Y (x, θ), such that the conditional distribution of Y (x, θ)−q(x |ω) must be postulated [37].

Following Yu and Moyeed [38], we consider a likelihood based on the (centered) Asymmetric Laplace Distribution
(ALD), whose density function is

fAL(u; λ, κ) =
λ

κ + 1/κ

{
exp [(λ/κ) u] , u < 0,

exp [−(λκ) u] , u ≥ 0.
(15)

Despite another approaches are available, the ALD is commonly chosen as a simpler alternative without requiring
he need of complex choices of prior distributions and hyperparameters [39]. Since the introduction in [38],
he choice of the ALD has proven to be effective for Bayesian quantile regression [40]. Based on empirical
ndings [38], the ALD is robust to the true underlying likelihood. In [41], an asymptotic justification of the ALD for
uantile regression is explored, showing the posterior consistency under general conditions. Following the empirical
obustness of the ALD and its relative simplicity, we choose it as a basis for the Bayesian formulation.

The two parameters of the distribution are the scale and asymmetry parameters, λ > 0 and κ > 0 respectively.
he ALD consists of two exponential distributions in |u|, with rates λ/κ and λκ , for negative and positive argument
respectively. Setting the rates to 1 − τ and τ , the density function of the ALD can be expressed in terms of the

heck function ρτ defined in (5). After elementary calculations it comes

f (u) = τ (1 − τ ) exp −ρ (u) . (16)
τ [ τ ]

7



C. Sabater, O.L. Maı̂tre, P.M. Congedo et al. Computer Methods in Applied Mechanics and Engineering 376 (2021) 113632

I
(
t
t
f
f

I
h

t

3

o
i
F
e

I
l
o

i
s
ω

t

a
t
a

O

To derive the likelihood of Y we exploit the fact that the yi are sampled independently. Therefore, we obtain

Lτ (Y|ω) =

NY∏
i=1

fτ (yi − q(xi |ω)) =

NY∏
i=1

τ (1 − τ ) exp [−ρτ (yi − q(xi |ω))] . (17)

t is seen that the maximizer of (17) corresponds to the minimizer ω∗
τ of the loss function (11). In other words, ω∗

τ

resp. q∗
τ (x)) is the Maximum Likelihood Estimator (MLE) of the quantile parameters (resp. of the quantile) for

he likelihood in (17). Further, the MLE is invariant to consistent scaling of the two exponential rates preserving
heir ratio τ/(1 − τ ). This is due to the property of the scaling property of the check-function: ρτ (u/α) = ρτ (u)/α
or any α > 0. In practice, changing the scaling factor α will affect the spread of the AL density function, as seen
rom the following expression:

fτ (u; α) =
τ (1 − τ )

α
exp

[
−

ρτ (u)
α

]
. (18)

n the present work, we restrict ourselves to the case α = 1, which was found suitable in all the tests presented
ereafter. However, our approach could benefit in adapting α as to better account for the conditional distribution

Y (x, θ). For instance, α could be treated as a hyper-parameter, and could be inferred. All these aspects fall beyond
he scope of the present paper and will be presented elsewhere.

.2.2. Posterior sampling
The likelihood of Y being set, it remains to discuss the prior of ω and the evidence pτ (Y). Concerning the prior

f the parameters, a non informative prior (improper uniform distribution) is selected in the absence of any a priori
nformation on the parameters. However, we shall keep the prior in the subsequent development to remain general.
urther, we remark that if some a priori knowledge on qτ (x) is available at the control points x̃ j ∈ X , one can
asily translate it into an a priori on ω, thanks to the linear form of (10).

At this point, we have obtained an expression for the posterior distribution of the regression parameters ω, up
to a multiplicative factor (the inverse of the evidence). The role of pτ (Y) is to ensure that the posterior integrates
to one,∫

RNX
pτ (ω|Y)dω = 1.

t practice, the evidence must be numerically estimated, if needed, as there is no closed-form expression for the
ikelihood. Similarly, the absence of explicit expression prevents the direct computation of the moments and statistics
f posterior of ω; instead it is necessary to proceed by sampling pτ (ω|Y) to estimate statistics.

In the following, we use a Markov Chain Monte Carlo method to sample pτ (ω|Y). The MCMC method
s appropriate to sample complex, high dimensional, or non-explicit probability distributions for which a direct
ampling is difficult or not feasible [42]. The key idea of MCMC is to generate a random sequence of sample points
k , with a simple probabilistic transition rule from ωk to ωk+1 ensuring that the asymptotic invariant measure of

he chain corresponds to the target distribution, here pτ (ω|Y).
The Metropolis–Hastings (MH) algorithm [43,44] is one of the most popular MCMC samplers. It is based on

acceptance/rejection rule for the next step of the chain given the current point of the chain, ωk . Specifically,
he proposed point ω′ is drawn at random from the conditional distribution pt(ω′

|ωk). The proposed transition is
ccepted, i.e. ωk+1 = ω′, with a probability π given by

π = min
(

1,
pτ (ω′

|Y)pt(ωk |ω
′)

pτ (ωk |Y)pt(ω′|ωk)

)
. (19)

therwise, the transition is rejected and ωk+1 = ωk . In the case of a reversible proposals (pt(ωk |ω
′) = pt(ω′

|ωk)),
the rule always accepts a transition to points with higher posterior value, and accepts lower posterior points with a
decreasing probability equal to the ratio (<1) of actual and proposed posterior values. While needing the ratio of
posterior values defining the rule, it is not needed to know the evidence pτ (Y) when applying the MH algorithm
on the posterior in (14), the product of likelihoods and priors suffices.

The choice of the proposal distribution pt(ω′
|ω) is critical to efficiently sample the posterior distribution [42].

The objective is to generate a chain with rapid mixing properties, such that, irrespective of the starting point, ωk
quickly converges to the stationary distribution. If the proposal distribution induces increments ω′

− ω that are too
8
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small, the proposed points are accepted with high rate but many steps are required to explore the whole distribution.
If on the contrary the increments tend to be too large, the MH algorithm exhibits a high rejection rate with long
range correlation between the successive steps. Acceptance rates in the range of [0.2, 0.35] are considered to offer

close to optimal trade-off for the mixing of the chain. In the present work, we consider (reversible) Gaussian
roposals,

pt(ω′
|ω) = N (ω,Σ 2

pt
), (20)

ith the covariance matrix Σ 2
pt

proportional to the posterior covariance of the sampled quantity:

Σ 2
pt

=
2.382

NX

[
E
(
ωωT )

− E (ω)E
(
ωT )] . (21)

In this approach, the posterior covariance of ω must be estimated since the posterior distribution is not explicitly
known. This is achieved in the burn in stage of the MH algorithm, where the proposal covariance is regularly
updated as the chain advances and the estimate of the posterior covariance progresses. Note that the scaling of the
covariance in (21) is optimal in the case of Gaussian posteriors [45]. This rule has provided satisfying results for
all the cases presented hereafter.

3.2.3. Quantile error
The MH algorithm can be used to produce a large sample set of ω ∼ p(ω|Y) at a modest computational

cost. Indeed the MH procedure involves only the evaluation of the loss function and no optimization. Typically,
a long chain is computed and sample points of ω are extracted by sub-sampling the chain. Each sampled value ωk

corresponds to an estimate q̃k
τ (x) of the quantile, namely

q̃k
τ (x) = Φ(x)T ωk, Φ j (x) = φ(|x̃ j − x |). (22)

The linearity of the model (22) can be exploited to effectively compute the moments of the quantile estimate at
any locations x ∈ Ω . In particular, due to the asymmetry of the likelihood, the posterior average of the quantile,
¯τ (x) = Φ(x)TE (ω), does not coincide with the MLE q∗

τ (x). With sufficiently large sample sets, it is even possible
to estimate the empirical distribution of the estimate and build confidence intervals on the predicted quantile value.
We observe that these characterizations relate to the sample set Y only and, therefore, disregard any possible source
of error incurring to the quantile discretization and the selected control points in X . Future works will have to focus
and improve on this aspect.

The information in the Bayesian posterior distribution of the quantile estimate can be exploited to deploy infilling
strategies to improve the quantile estimation over Ω . For instance, one can enrich Y with new samples of Y (x, θ) at
points x where the posterior variance, or inter-quantile range, of q∗

τ (x) is the largest. Our tests (not shown) exploiting
such estimates of the quantile error is effective when complemented with another infilling strategy for the set of
control points X . However, we focus in the present work on the optimization problem and therefore do not develop
here strategies aiming at minimizing the global quantile error over the whole domain Ω .

3.3. Optimization strategy

As discussed before, solving (13) will not yield the exact minimizer of qτ , in general, because of the error
τ (x)−q∗

τ (x). The objective is then to improve the estimation of the minimizer by improving the quantile estimator
though a parsimonious enrichment of Y . Classical Bayesian Optimization methods are based on enrichment
that combines two objectives: the exploration of Ω and the exploitation of the statistical model to improve the
current estimate of the minimizer. For the minimization of a deterministic objective function f (x), the expected
improvement (EI) infilling criteria was introduced to account for the imperfect knowledge of f [46]. The EI
essentially measures the possible improvement at any point x ∈ Ω of the objective value from the current best
estimate f (x∗

k ), given the statistical model (usually a Gaussian process model) of f (x). In sequential approaches,
the point with highest EI is selected, the objective function is evaluated at this point and the statistical model is
updated with this new observation of f . The procedure is then repeated until a stopping criterion is satisfied.

The procedure outlined above must be adapted to the minimization of a quantile. Indeed, we do not want to

evaluate the objective at the new point, i.e., estimate qτ (x); instead we can only draw (few) samples of Y (x, θ). In

9
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other words, the objective of the minimization procedure is never evaluated and we entirely rely on our estimation
to guide the infilling procedure.

However, new sample points should preferentially be drawn in areas of interest where q∗
τ (x) is closed to the

minimum of qτ , in order to reduce the error in the estimate x̂∗ defined in (13).

3.3.1. Infill with samples of minimum
In the following, we denote Y (l) the sample set F(x, θ) at the lth iteration of the optimization procedure. We

propose to directly rely on the posterior distribution of the quantile estimator based on Y (l) to propose new points and
enrich the set Y (l). The MH algorithm detailed above is used to generate a sample set Q(l) of Pnew ≥ 1 independent
andom realizations q̃k

τ (x) of the estimator in (22). In practice, the sample set is obtained by sub-sampling the MCMC
hain every ns steps, where ns is set large enough to ensure that successive sample points ωk are uncorrelated. For
ach element q̃k

τ (x) ∈ Q we denote x̂∗

k the associated global minimizer, such that

x̂∗

k = arg min
x∈Ω

q̃k
τ (x). (23)

inally, we enrich Y (l) by drawing randomly one sample point yk of Y (x̂∗

k , θ) and setting

Y (l+1)
= Y (l)

∪
{
(x̂∗

k , yk), k = 1, . . . , Pnew
}
. (24)

Solving (23) requires the resolution of an optimization problem in Ω . This problem may be challenging because
f the dimensionality of the design space Ω and the existence of several local minima in the current quantile
odel q̃k

τ (x). However, the evaluations of the model are cheap such that robust techniques can be employed. In the
omputations presented we relied on the differential evolution algorithm [35] to solve (23).

It is clear that this procedure will produce an enrichment of Y at “random replicas” of the quantile estimator
∗
τ (x). As shown in the examples below, sampling the estimator of qτ (x) allows to explore multiple and disconnected
otential optimum areas, as long as the quality of the estimator is not high enough to rule-out candidate areas. In
act, the approach can be seen as sampling with Pnew points the random variable X∗

l being the (random) minimizer
f the random estimator of qτ (x). In particular, if the estimation is poor in some areas of Ω , the sampled quantile
stimator q̃τ (x) can yield a optimum x̂∗

k in this area. In other words, regions with small but non zero probability of
aving the minimum will be sampled for large enough Pnew or at a later iteration (larger l). As remarked, we observe
hat the parameter α of the ALD distribution in Section 3.2.1 can be used to tighten or relax the belief on the quality
f the Bayesian estimator of the quantile: a high value of α would induce higher deviations of the sampled parameter
ector ωk , thus promoting more exploration, while a lower value would favor exploitation of q∗

τ (x). As discussed
efore, the selection of α will be the focus of future works and we fix here α = 1. Besides the parameter alpha, the
LD distribution choice plays an important role in fixing the uncertainty structure of the quantile approximation

nd, therefore, of the optimization procedure. The impact of using the ALD on the convergence of the optimization
rocedure, compared to alternative likelihood forms, is difficult to appreciate and would require more investigation.
e mention here two important features of the ALD, making it a robust candidate for Bayesian optimization. First,

he quantile model necessarily encompasses the true optimum as the ALD is unbounded. This property is necessary
o ensure the convergence of the optimization. Second, the Laplace distributions constitute robust loss functions,
ompared to other unbounded distributions such as the Gaussian, owing to flat tails. By enabling larger departures
rom the “best” model (outliers), the ALD provides a conservatism in the quantile model’s uncertainty bounds.

.3.2. Refinement of the quantile model
Whence the sample set Y (l) has been enriched, the estimation of the quantile can be updated and the procedure

an be repeated as long as some convergence criteria are not satisfied. However, while NY
(l)

= |Y (l)
| is increasing,

t may become necessary to jointly refine the set X of control points. Without such a refinement, the quantile
iscretization error would be dominant, for large Y , and will not necessarily reduce in the area of the minimizer,
herefore preventing the convergence of the optimization procedure.

Indexing X with the iteration index, it is obvious that the enrichment of X (l) is not independent of the enrichment
f Y (l). Specifically, adding a new control point is potentially beneficial to the approximation only if it is placed in
reas where the new sample points have been added. In areas that have not been re-sampled, on the contrary, the
ntroduction of a control point cannot affect the estimation but can only increase the complexity of the quantile
odel. A naive approach would consist in adding a control point at each of the re-sampled optimum points

10
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k . However, this would quickly result in set X (l) with too many elements and a deteriorated estimation as a
consequence. A more advanced approach is necessary.

We propose to proceed in two steps for the enrichment of X (l). In the first step we propose a set of PX < Pnew

candidates, and in the second step we accept or reject the proposed enrichment. The first stage consists in the
selection of the candidate points, and one can use a random subset of points in Y (l+1)

\ Y (l). The selection can be
achieved picking randomly a fixed number PX < Pnew of points (for instance PX = 1) or ascribing a probability

< PX/Pnew of selection to each of the points in Y (l+1)
\ Y (l). To avoid having to set a priori PX , we used in

this work an alternative approach; the points in Y (l+1)
\ Y (l) are clustered in PX < Pnew groups using a standard

K-Means Clustering algorithm. The Euclidean distance over Ω was considered to measure distance between points,
and the number PX of clusters was determined using the method of Silhouettes [47]. This procedure produces the
set Q = {x̄k, k = 1, . . . , PX } of cluster centers.

In a second stage, the insertion of x̄k in X (l+1) is considered. Starting from X (l+1)
= X (l), the centroids in Q are

considered one after the other. Applying the Bayesian quantile estimation on Y (l+1) and X (l+1)
∪{x̄k}, we accept the

ew point, and set X (l+1)
= X (l+1)

∪ {x̄k}, if it decreases the expected loss of the quantile model. Specifically, we
stimate E (Lτ (Y|ω)) by drawing samples of ω according to its density conditioned on Y (l+1), that is pτ (w|Y). In

other words, we use the expected likelihood of the enriched model as a measure of goodness-of-fit. This measure
was found more effective than carrying a full cross-validation procedure.

3.3.3. Optimization procedure
A schematic overview of the complete optimization procedure is shown in Fig. 2. It starts, on the left, with the

initial sample sets of F , Y (l=1), and control points, X (1), constructed using the methodology discussed in Section 2.4.
The quantile model is then constructed on Y (l) and X (l), following the Bayesian approach and Pnew minimums of
independent realizations of q∗

τ k(x) are computed. The random function Y (x, θ) is sampled at these minimums to
generate enriched Y (l+1). Finally, new control points for the quantile approximation are proposed and accepted or
rejected to form X (l+1). The next optimization iteration can start, unless a stopping criterion is attained. Different
stopping criteria can be thought of. Iterations can be stopped when the computational budget is exhausted. In
targeted applications, the computational budget will refer to the number of evaluations of the random function,
Y (x, θ), whose cost is assumed to largely exceed all other computational costs (in particular the MH sampling
steps). Stopping criteria based on the convergence of the optimum are more tricky to define as the objective function
is never exactly evaluated and only estimated. A natural way to assess the convergence is to report the dispersion
of the Pnew optima generated at the lth step of the optimization procedure. If all these optima agree well, it means
that the dispersion of the Bayesian estimate is low and their average should be representative of the true optimum
x∗. Alternatively, one can look to the minimizer x̃∗ of MLE q∗

τ (x) and assess the convergence of the optimization
through the posterior variance of the quantile estimator at that location.

After the initial sampling, the number of required control points (model complexity) is selected by cross
validation. Then, quantile regression is performed to globally obtain the quantile as a function of the design
parameters. This is equivalent to the MLE estimation of the Bayesian model. The posterior distribution of the model
is then obtained by MCMC. From the complete posterior distribution, Pnew realizations are selected randomly, and
the optimum location for each of these realizations is found. At these Pnew optimum locations samples are drawn
(randomly in the stochastic space) and evaluated in the full order model. After the additional sampling, it is studied
whether the model complexity should be increased or not. Then the model is built again with the additional samples
(and if required additional control points), and the process is repeated until convergence.

4. Numerical application to test functions

In this section, we apply the proposed framework to the optimization of multi-modal quantiles. The behavior
of the quantile estimation and of the complete optimization procedure is investigated on low dimensional settings,
Ω ⊂ Rd with d = 1 and 2 in Sections 4.1 and 4.2 respectively. In Section 5, the optimization framework will be
applied to a complex optimization problem with engineering relevance.
11
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Fig. 2. Overview of the optimization framework for Bayesian quantile regression.

4.1. 1D test function

For x ∈ Ωd=1
= [a, b], with a = 2 and b = 8, we consider the following random performance function,

Y d=1(x, θ) = 3 − 4 exp(−4(x − 4)2) − 5.2 exp(−4(x − 6)2) +
x − a
b − a

ξ1(θ ) +
b − x
b − a

ξ2(θ ), (25)

here ξ1 and ξ2 are two independent random variables with uniform and Gaussian distributions, respectively,

ξ1 ∼ U(0, 10), ξ2 ∼ N (1.01, 0.71). (26)

e focus on the minimization of the 80% quantile, i.e., τ = 0.8. Although the stochastic dimensionality of the
roblem is low (having only two independent random sources), permitting the use of effective surrogate-based
ethods, it will be treated as high-dimensional assuming that Y d=1(·, θ) is infinitely dimensional and can only be

ampled. In other words, we do not attempt to exploit the specific structure of the stochastic function. However,
e exploit the low computational cost of the function evaluation to construct a reference estimate of the quantile
sing 106 Monte Carlo samples of (ξ1, ξ2). Fig. 3 shows this reference quantile, as well as 104random samples of

Y d=1(x, θ) uniformly drawn in Ωd=1. The bi-modality in x of the quantile can be appreciated, with two comparable
inimums located around x = 4 and x = 2. The objective is then to estimate the quantile accurately in these

ocations close and, eventually, determine the global optimum (x ≈ 4) at minimal computational cost (from a
inimum number of samples of Y ).

.1.1. Control points selection
We first focus on the quantile estimator q∗

τ and the selection of the control points for the regression. Fig. 4 reports
he best estimators q∗

τ (x) for NY = 200 and using NX = 5 (left), NX = 13 (center) and NX = 20 (right) control
oints for the regression (black squares), following Sobol sequences. The plots also report the reference quantile
dashed line) for comparison. We see that for NX = 5, the quantile estimator misses some features of the reference
uantile (bias). On the other hand, the predictor for NX = 20 control points over-fits the data and becomes noisy
high variance). In contrast, the case with NX = 13 leads to an estimator with both low bias and low variance.

In Section 2.4 we discussed the selection of the number of control points supporting the quantile approximation
hrough Cross-Validation based on the loss function in (6). Fig. 5 shows typical evolutions of the CV-loss with NX .
he CV loss is reported for two sample sets Y with respective size N = 50 (left plot) and N = 200 (right plot),
Y Y

12
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Fig. 3. Reference quantile qτ (x), for τ = 0.8 and 10,000 random samples of Y d=1(x, θ).

Fig. 4. Quantile estimators q∗
τ for NX = 5, 13 and 20 (from left to right). The plots also depicts the NY = 200 sample points of Y and

the reference quantile. The control points are reported as black squares.

the latter corresponding to the case of Fig. 4. In order to demonstrate that the CV loss is an appropriate measure of
the quality of the estimator, we also report the RMSE of the estimator with the reference solution, q∗

τ (x) − qτ (x),
computed at 500 linearly spaced locations along the design space. We observe a very high correlation between the
RMSE and the CV-loss estimate, demonstrating that the latter is relevant to select the NX when no reference for
the quantile is available.

Further, the CV-losses are seen to present a minimum at NX = 10 and NX = 13 for NY = 50 and NY = 200
espectively. This finding is consistent with the expectation that a larger sample set allows for learning more
tructures in the quantile and thus necessitating larger NX . This aspect is illustrated further in Fig. 6 where the
MSE of the best estimators q∗

τ (x), for fixed values of NX and increasing sample sets Y , are reported. When NX
s small, the RMSE of the estimator quickly stagnates when NY increases, denoting a poor quantile discretization
nable to fit the feature of the true quantile. The intermediate value NX = 13 is providing the best estimator among

he values tested till NY ≈ 1000, when the model with NX = 20 becomes better while no improvement is observed

13
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Fig. 5. Cross-validation loss and RMSE (with respect to the reference) of the best estimator q∗
τ (x) as functions of NX the number of control

points: (a) Case of NY = 50, (b) case of NY = 200.

Fig. 6. RMSE of q∗
τ (x) as a function of the sample set size NY and for different number of control points (NX ) as indicated.

for NX = 13 after NY exceeds 4000. These results illustrate the importance of balancing the quantile discretization
error to the sample set available for the construction.

4.1.2. Optimization
We return to the robust optimization problem and the minimization of the τ -quantile. The optimization procedure

is initialized with NY = 50 random samples uniformly drawn in Ωd=1. The initial estimate of the quantile uses
NX = 10 control points, following the results presented in Fig. 5. The Bayesian approach is subsequently employed
to draw a sample set of 30,000 realizations of the estimator from its posterior. The 95% confidence interval of the
estimator is derived from the sample set and reported as the shaded area in the top plot of Fig. 7. Also shown
are the reference, MLE, and posterior averaged estimators of the quantile. The confidence interval indicates a high
estimation variability, which is explained by the small size of the sample set Y . The bottom plot of Fig. 7 depicts
the histogram of the posterior minimum x∗ of the Bayesian quantile estimator. The histogram is built on a subset
k

14
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of 1000 realizations extracted from the MCMC sample set. The histogram shows that the sample set of minimums
concentrates in two areas around x ∈ [3.5, 4.2] and x ∈ [5.8, 6.2]. The two domains correspond to the two most
significant local minima, and their presence highlights the impossibility to decide on the global minimum for such
low size Y . The sample-set Y is then enriched with P = 10 new sample points selected randomly from the set of
realizations of the optimum x∗

k , so the new sample points follow the distribution depicted by the histogram in the
bottom plot of Fig. 7.

After the addition of these new sample points, the quantile estimation is updated, testing the insertion of new
control points in the quantile discretization. The tentative new control points are proposed as the cluster’s centers
of the sample set of minima x∗

k . In this example, the method of silhouettes and K-means clustering split the sample
et into 2 clusters, such that two new control points are proposed at this stage of the algorithm. However, none of
he points is accepted, as it does not improve the marginal likelihood of the model, and X is not enriched. Still,
he procedure continues, restarting from the sampling of the posterior, using now the likelihood of the enriched Y .

Fig. 7. Bayesian estimator of the quantile based on the initial sample sets with NY = 50 sample points.

Fig. 8 presents the Bayesian estimator of the quantile after four iterations of the optimization procedure (so now
NY = 90). We observe that, compared to the previous case, the MLE predictor fits better the reference quantile. The
dditional sample points (dark gray dots) have been inserted at locations x close to the two local minima, where
he estimation has improved the most. Further, the confidence interval in the quantile prediction around the local

inima has drastically reduced, denoting that the information mostly concerns the regions of interest.
At this stage of the optimization, the information in Y is sufficient to make beneficial the insertion of a new

ontrol point near the local minima at x = 4. The effect of this insertion is shown in Fig. 9. Specifically, the new
ontrol point reduces the bias of the MLE estimator without introducing significant variance (without a noticeable
ncrease of the confidence intervals).

Fig. 10 shows the estimator after 20 optimization iterations, corresponding to a sample set with size NY = 250.
he accuracy of the estimation near the two local minima has greatly improved, with restricted confidence intervals,
s most samples fall in these two regions. This improvement leads to the determination with high confidence in the

lobal optimum location in the neighborhood of x = 4.
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Fig. 8. Bayesian quantile estimator after 4 iterations of the optimization procedure.

Fig. 9. Effect of a new control point on the quantile estimation. Left: before insertion. Right: after insertion.
16
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Fig. 10. Quantile estimation after 20 iterations of the optimization procedure (NY = 250).

To better appreciate the convergence of the optimization procedure, Fig. 11 details the evolutions with the
ptimization iterations (so, essentially a measure the computational cost of the method) of the best estimate of
he quantile minimum location x∗ and value q∗

τ (x∗). The figure compares our Bayesian approach to draw the new
ample points and the insertion of new control points, with a naive approach that enriches Y with the same number
f samples but selecting their locations xi randomly in the domain Ω . The second approach is not converging, for
he considered number of iterations, while our approach achieves fairly precise estimates of q∗

τ (x∗) and location x∗.
The naive approach overestimates the value at the optimum and keeps switching the best location from one local
minimum to another. In contrast, our procedure converges well on the location of the reference global optimum,
although the quantile MLE at this point is still affected by a noticeable error (≈ 5%) after 20 iterations. The bars
on the value of q∗

τ correspond to the 95% confidence interval of the Bayesian analysis. That means, they represent
he confidence in distribution of the possible optimum values from different realizations of the model that originate
rom the Bayesian perspective. One can verify that the bars are much smaller in our approach, reflecting higher
onfidence in the optimal quantile value, and contain the reference value. The level of error in the minimal quantile
alue achieved by our method is consistent with the amount of information in the sample set with a size of NY = 250
nly.

This simple experiment illustrates the effectiveness of the method to determine fairly accurately the location of
he global optimum of the quantile, without having to rely on estimates of the quantile at each new evaluation point

xi of the optimization procedure. We underline that at each iteration, P = 10 samples only need to be generated. If
ne assumes that O(100) samples would be necessary for the point-wise estimation of the 80% quantile at a given

x , only 2 to 3 optimization points would be feasible for the same computational budget. Exploiting the structure
f Y and observing that it is a mixture of a uniform and a Gaussian random variables at all x , one could rely on
linear) surrogates of Y d=1(·, θ) to compute exactly (or with high accuracy) from a low number of samples, in fact,
hree samples for each xi . Thus, even in this ideal situation, less than 100 optimizations points could be evaluated
or the same computational budget; we also recall that not all situations of interest will be reducible to such low

imensional surrogate evaluation.
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Fig. 11. Convergence of the optimization process for our Bayesian and naive approaches for 1D test function. Left: estimate of the optimal
uantile. Right: estimate of optimal quantile location.

.2. 2D test function

In this section we extend the two dimensions (d = 2) to the previous test case, setting x = (x1, x2) ∈ Ωd=2
=

d=1
× Ωd=1, and letting

Y d=2(x, θ) = Y d=1(x1, θ) + Y d=1(x2, θ). (27)

ote that in the definition of the this test case, xi refers to the i th component of x and not to a sample index as
reviously. The reference estimate of the 80%-quantile is shown in the left plot of Fig. 12. The quantile q0.8(x) has
local minima in Ωd=2, the global one being at x∗

≈ (4, 4). The right plot of Fig. 12 corresponds to the initial
uantile MLE obtained for an initial sample set Y of NY = 200 points (small black dots). It was determined that

NX = 32 control points (black circles), from a Sobol sequence, was providing the minimum CV-loss. Despite the
imited sample set, the quantile regression captures the multi-modality of the qτ (x).

Fig. 12. Reference 80%-quantile of Y d=2 defined in (27) (left) and its initial MLE (right) based on 32 control points and 200 samples.

Proceeding with the optimization, we consider the enrichment of Y with P = 6 new sample points at each
teration. Fig. 13 shows the sample set points after 42 optimization iterations, as well as the resulting quantile MLE
nd the added control points (black triangles). The figure shows how the new samples are drawn in the neighborhood
f the global optimum.
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Fig. 13. MLE of the 80% quantile after 42 optimization iterations.

Fig. 14 reports the convergence of the estimated location of the optimal point x∗ and its quantile value q∗
τ (x∗).

The case of the naive sampling is also reported for comparison. Concerning the convergence of the optimum point
x∗, it is seen that our method can provide a correct estimate in only ten iterations (NY = 260), and a relatively

ell converged minimal point after roughly 28 iterations (NY = 368), while the naive approach is still hesitating
etween the different local minima after twice as many iterations (NY = 536). Concerning the convergence of the
inimum value, about 40 iterations (NY = 440) are necessary to obtain a reasonable estimate with an error of less

han a few percents, while the naive approach exhibits no convergence at all. We also remark that the real optima
ies within the 95% confidence interval when using our method.

Fig. 14. Convergence of the optimization process for our Bayesian and naive approaches for 2D test function. Left: estimate of optimal
uantile location. Right: estimate of the optimal quantile.
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5. Optimization of a shock control bump under geometrical and operational uncertainties

In this section, we apply the quantile optimization framework to a representative aerodynamic shape optimization
problem under a total of 382 independent uncertainty sources.

5.1. Problem definition

The problem concerns the robust design of a Shock Control Bump (SCB) retrofitted to an airfoil subject
to operational and geometrical uncertainties. SCBs are passive devices that mitigate normal shock waves over
the airfoil in the transonic flow regime [48,49]. The effectiveness of these devices is highly sensitive to the
operational conditions (e.g., free-stream Mach number, angle of attack or lift coefficient), and manufacturing
tolerances (geometry) [8]. These uncertainties can move the shock wave location upstream or downstream, and
the effect of the bump becomes much less effective when the shock departs from its design location. Therefore, it
is crucial to account for uncertainties when designing the SCB.

The geometry of the SCB is parametrized by a modified Hicks–Henne bump function, following Mazaheri [50]
and Tian [51]:

Zbump(X ) = Hbump

[
sin

(
π

(
X − Xstart

Lbump

)Mbump
)]Tbump

, Xstart ≤ X ≤ Xstart + Lbump, (28)

here

Mbump =
log (0.5)

log
(

X Hbump

) . (29)

he five design parameters are the bump maximum height Hbump, the maximum height location X Hbump , the starting
location Xstart, the bump length Lbump and the slope factor Tbump. The locations and height are normalized by the
hord-length, and the extent of the design domain Ω is specified in Table 1. Fig. 15 illustrates the parametrization of
he bump and how the deformation Zbump modifies the original airfoil geometry, Z (X ), to the retrofitted geometry.

Table 1
Design range for the optimization of the SCB.

Parameter Description Lower bound Upper bound

Hbump Bump maximum height 0 0.015
X Hbump Bump maximum height location (as fraction of Lbump) 0.4 0.85
Lbump Bump length 0.15 0.45
Xstart Bump starting location 0.3 0.54
Tbump Bump slope factor 0.2 2

Fig. 15. (a) Bump relative to the airfoil; (b) design parameters defining the bump shape.

Consistently with the notation of the previous sections, the design vector is x = (∈ Ω ⊂ R5), and we consider
an optimization based on CD , the airfoil’s drag coefficient, at a constant speed and lift. Because of operational and
geometrical uncertainties, CD is not a deterministic quantity, and we seek for the optimal design that minimizes
the τ -quantile of CD(x, θ). We consider two different optimizations: one focusing on adverse situations (those that
would lead to a high value of drag) using the 95% quantile, and the second focusing on day-to-day conditions with
the minimization of the 50% quantile (median) of the drag.
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5.1.1. Geometrical uncertainties
Several approaches are able to handle uncertainty quantification of partial differential equations with random

geometries [52–54]. A basic procedure in Computational Fluid Dynamics (CFD) based optimization consists in
considering random perturbations Z±

Geo(X ) of the nominal geometry, where the ± indicates the intrados and extrados
of the airfoil and X is again the normalized coordinate along the chord line. In the present work, the nominal
geometry is the RAE2822 airfoil [55]. For simplicity, we shall assume here that Z±

Geo(X ) have zero mean and
follow Gaussian distributions with covariance function

C(X, X ′) =

√
σ 2

Geo(X )σ 2
Geo(X ′) exp

(
|X − X ′

|
2

2L2

)
, (30)

here the variance σ 2
Geo of Z±

Geo varies with X , and L is the correlation length of the stochastic processes. The
ovariance in (30) is symmetric, semi positive definite for σ 2

Geo ≥ 0, and corresponds to smooth processes [56]. In
he following, we set L = 0.1 and σ 2

Geo(X ) = (σmax X (X − 1))2 such that Z±

Geo vanish at the leading and trailing
dges. This behavior at the leading and trailing edges is necessary to avoid non-matching deviations at X = 0, 1

that could lead to convergence problems with the mesh generator (negative cells) and CFD solver. The geometrical
uncertainty is the largest at mid-chord (X = 0.5), where the standard deviation tops to σmax = 0.00022 (unit of
hord length). This standard deviation corresponds to 2.3 mm in the case of the Airbus A330-300 wing with a chord
oot of 10.56 m [57].

In practice, the discretization of the airfoil uses computational nodes X±

i on the upper and lower surface of
the nominal geometry. This set of nodes supports the discretization of the covariance functions into covariance
matrices Σ±

Geo. The sampling of Z±

Geo(X i ) proceeds by standard techniques relying on a spectral decomposition of
the respective covariance matrices Σ±

Geo. The numerical example below uses a total of 380 computational nodes
on the two surfaces, leading to 380 geometrical uncertainties. Fig. 16 shows, in the left plot, 20 realizations of the
Gaussian Field Z+

Geo (extrados). The right plot shows 20 realizations of the uncertain airfoil geometry; the deviations
have been increased ten times for clarity.

Fig. 16. Geometrical uncertainties with 20 random realizations of Z+

Geo(X ) (a) and 20 realizations of the resulting airfoil geometry (b) where
Z±

Geo has been amplified ten times for visibility.

We observe that the sampling approach of realizations is direct, in contrast to alternative reduction approaches
that would have exploited the correlation of Z±

Geo to derive lower-dimensional parametrizations of Z±

Geo, for instance
by truncated Karhunen–Loeve expansions (KLE) [5,17,58]. Such reduction is unnecessary in our approach as the
quantile regression is insensitive to the dimensionality of the uncertainty sources. Finally, although the normal
distributions used to sample the stochastic process are unbounded, the standard deviations considered are small
enough to always result in well-posed problems in our numerical simulations.

5.1.2. Operational uncertainties
We consider two operational uncertainties, the lift coefficient CL and Mach number Ma, which have the most

substantial influence in the shock wave location. The Mach number relates to the cruising speed of the aircraft,
21



C. Sabater, O.L. Maı̂tre, P.M. Congedo et al. Computer Methods in Applied Mechanics and Engineering 376 (2021) 113632

t
o
C

5

s
S
p
w
g
p
u
t
u
r
s
C
f
m
t

Table 2
Operational uncertainties.

Parameter Description Mean value Standard deviation

Ma Freestream Mach number 0.734 0.0045
CL Lift coefficient 0.791 0.0045

while the CL relates to its weight. For these two operational parameters, we assume symmetric Beta distributions
centered on the nominal condition. The shape parameters are set to α1 = α2 = 5 in both cases. For these parameters,
he Beta-distribution resembles truncated normal distributions. The location β1 and scale β2 parameters are fixed to
btain prescribed mean µ and standard deviation σ as reported in Table 2. The standard deviations of the Ma and
L represent typical changes in flight speed and aircraft weight during a flight segment [5,8].

.1.3. CFD solver
The flow simulations for the evaluation of the drag coefficient rely on DLR CFD solver TAU [59]. This code

olves the compressible Navier–Stokes equations, complemented with Reynolds Average Navier Stokes (RANS)
palart–Allmaras turbulence model. In each simulation, the solver adjusts the airfoil’s angle of attack to obtain the
rescribed CL . The discretization uses a central flux discretization, upper/lower symmetric Gauss–Seidel scheme,
ith a backward Euler time-implicit integration scheme. Fig. 17 shows the hybrid unstructured mesh of the nominal
eometry; it consists of approximatively 29,000 mesh nodes constituting quasi-two-dimensional, tetrahedral, and
rismatic cells. The mesh deformation tool developed byDLR [60] is employed to deform the meshes around the
ncertain airfoil and the SCB. The deformation uses the linear elasticity theory to propagate the displacement from
he nominal geometry of the surface nodes X±

i inside the computational domain. The TAU built-in partitioner is
sed to decompose the computational domain into four regions, for parallel computations. The density equation
esidual is reduced to 10−8 using a multigrid V-cycle. The discretization parameters were set according to previous
tudies on shape optimization [5], where the discretization error was estimated to be ≈ 0.1 Drag Count (DC,

D = 1 = 10,000 DC). The drag coefficient, CD , is obtained by the integration of the pressure and viscous
orces along the airfoil surface. DLR’s Flow Simulator simulation environment [61] controls the process chain and
anages convergence, restarts, and parallel evaluations. Overall, the computational time of a single sample amounts

o roughly 2 min on average.

Fig. 17. Typical CFD mesh for the estimation of CD .

5.2. Deterministic optimization

Before engaging in the robust optimization, we start by presenting the deterministic optimization solution,

corresponding to the nominal geometry and mean values of the operational conditions. Classical Surrogate Based
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Optimization [46] is used for this optimization. The optimal SCB is found in 116 iterations. The bump reduces the
drag of the baseline configuration by 23.9% through an isentropic deceleration of the shock wave. This effect is
visible in Fig. 18, which reports the pressure coefficients distributions on the baseline airfoil (nominal geometry)
without (left) and with (right) the deterministic optimal SCB. As mentioned before, this optimum is not robust to
operational and geometrical uncertainties.

Fig. 18. Pressure coefficients on the baseline airfoil without (left) and with (right) the deterministic optimal SCB.

.3. Robust quantile optimization

We use NY = 500 samples computed in parallel to initialize the optimization procedure. The initial samples are
hosen according to a Sobol sequence [36] in the five-dimensional design space Ω . For each sample that represents

a different design (different SCB shape), we draw a realization of the uncertain geometry (ZGeo) and operational
conditions (Ma, CL ), and compute the corresponding realization of the drag coefficient. With the initial samples set,
quantile regressions are performed with the CV procedure to select the numbers of control points NX in the quantile
egression. The CV losses are shown in Fig. 19 for the two quantiles and variable NX . For τ = 0.5 the CV-loss is
inimal at NX = 70, while it is minimal at NX = 50 for τ = 95. This difference is due to the size of the sample

et, which, for the same number of control points (same model complexity), is likely to induce more over-fitting
hen τ approaches 1 or 0. Note also that the minimum is more pronounced in the latter case, consistently with the
revious remark.

The robust optimization procedure is then engaged. At each iteration, we perform the selection of 12 new samples
o enrich Y , following the Bayesian approach. This calls for the sampling of high dimensional posteriors, with
nitially 70 (τ = 0.95) and 50 (τ = 0.5) dimensions respectively. In our numerical experiments, the adaptive

CMC sampler was robust enough and capable of exploring these high dimensional posterior distributions properly.
fter the selection of the new design points, their associated operational conditions and geometrical deviations are

andomly set, and their drag evaluated in parallel. The quantile estimations are updated, and the procedure iterates
ntil the optimization converges.

.3.1. Convergence of the optimization
The optimization converges in 175 iterations for τ = 0.5. The left plot in Fig. 20 shows the evolution with

he iterations of the estimated minimal drag quantile expressed in drag count units. The error bars on the quantile

alues represent the 95% confidence interval according to the distribution of the candidate optima solutions at
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Fig. 19. CV-losses as a function of the number NX of support points. NY = 500 and case of τ = 0.5 (a) and 0.95 (b).

Fig. 20. Convergence history of the optimum quantile for τ = 0.5 (left) and τ = 0.95 (right).

ach iteration. These are quickly reducing denoting the confidence in the final estimate of the optimum. Also,
wo additional control points were automatically introduced at iterations 6 and 92 to increase the accuracy in the
eighborhood of the global minima.

In the case of τ = 0.95, shown in the right plot of Fig. 20, more iterations are needed to converge, and even
fter ≈ 220 iterations the error bars on the estimator are not entirely reduced. In this case, the regression has used a
otal of five additional control points, introduced at iteration 20, 74, 123, 136, and 171. The effect on the optimum
stimates of the new control points is seen, especially in the early stages of the optimization.

Fig. 21 reports the standard deviation of the possible candidate optima at each iteration. The standard deviations
re globally decaying with the iteration index, but noisily with spikes and jumps to higher values. This noise is due

o the probabilistic nature of the quantile estimation and to the introduction of new control points that, although
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reducing the CV loss, induce a local increase of the regression’s standard deviation. However, one can appreciate
the global convergence of the optimization by taking the lower envelope of the curves. As one would have expected,
for the same sample set size, the standard deviation of the 50% quantile at the optimum is lower than for the 95%
quantile, underlying the more challenging character of the estimation. Further, the global reduction in the standard
deviation seems to agree with the expected asymptotic rate of samples-based quantile estimation in O(1/

√
NY ).

Fig. 21. Convergence history of standard deviation of possible candidate optima for τ = 0.5 (a) and τ = 0.95 (b).

Fig. 22 shows the location in Ω of the sample points in Y and X at the end of the 95% quantile optimization. Each
lot corresponds to the projection of the sample points on a 2D plane of 2 design parameters. The SCB parameters

x have been mapped to the unit-hypercube by an affine transformation. Histograms of the sample points in Y , for
ach design parameter, are also provided. The plots indicate that the majority of the samples added to Y during the
ptimization (blue points) fall in a few clusters underlying the existence of competing minima in the quantile. Most
amples not belonging to a cluster are the uniformly distributed initial sample points. The multi-modality of the
istograms also reflects the presence of competing minima. The clustering of the new samples (blue), in particular
n the neighborhood of the final optimal design point (red circle), demonstrates that the Bayesian quantile regression
an identify regions of interest and focus the computational effort in these areas. Concerning the additional control
oints (black), they all fall within the clusters, where it matters to improve the regression.

.3.2. Analysis of the robust optima
We generated a sample set of 10,000 realizations of the operational and geometrical uncertainties and computed

he corresponding realizations of the drag for the different optima: the deterministic optimum, the τ = 0.5, and
= 0.95 optima. These realizations allow assessing the quality of the quantiles Bayesian estimate. For τ = 0.5,

he differences between the MLE estimate of the quantile at the optimal design have a difference of less than 0.3%
1.35 drag counts) with the samples estimate. The difference is more significant for τ = 0.95, as expected, and is
qual to 1.33% (3.4 drag counts). These differences are consistent with the posterior’s standard deviation. In our
pinion, the accuracy of these estimates is quite reasonable, considering the total number of samples computed.

Fig. 23 illustrates the effects of the different optimal SCB. For each design, the plot shows the distribution of
he stochastic CD resulting from the uncertain operational condition and geometrical variabilities. We used violin
epresentations, with horizontal thickness proportional to the density of CD (estimated by a kernel method from the
amples set). The violins are superposed with the quartiles and the 5% and 95% quantiles. The baseline case,
hich corresponds to the airfoil with geometrical and operational uncertainties but no SCB, is also presented

n the leftmost part of the plot. The improvement due to the deterministic optimal SCB is evident (see orange

iolin), with a general reduction of the drag compared to the reference. However, we observe a rather long-tailed
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Fig. 22. Pair-plot representation of the sample sets in design space at the end of the optimization: sample points in Y (blue) and X (initial
ontrol points in orange and new points in black). Case of τ = 0.95. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

istribution. The case of the 50% quantile optimum is performing quite similarly to the deterministic optimum,
ith slightly improved quartile values (in particular, the median gains more than one drag count). However, the

ail, and generally the support, of the drag distribution remain quite broad. In contrast, the 95% quantile optimum
resents a significantly more compact drag distribution. The inter-quartile distances are roughly halved compared
o the deterministic optimum. This higher robustness comes at the expense of the median drag value that increases
y less than six drag counts. Table 3 summarizes the performance of the different airfoils and provides the optimal
arameters and number of simulations performed. The robust optimizations require about 20 to 30 times more
FD evaluations to converge than the deterministic optimization. In the present example, the hardest optimization
roblem (τ = 0.95) required a total of 3320 CFD computations. Further, the new samples (here 12) at a given
teration are computed in parallel, such that the computational overhead of the robust optimization is much less in
erms of wall-clock time to get the solution.

The optimum parameters reported in Table 3 indicate that the robustness of the τ = 0.95 optimum comes from
n SCB with higher and longer shapes, placed slightly more downstream and with lower slope factor Tbump than
he τ = 0.5 configuration. Fig. 24 reports the different optimal SCB shapes. The downstream displacement of the
ump enables dealing with a broader range of shock waves, leading to an effective drag reduction for more events,

n particular for the most substantial shock waves occurring at large Mach and lift. As a result, the robust optimal
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Fig. 23. Drag distributions due to geometrical and operational uncertainties and for different airfoils. From left to right: airfoil without SCB,
deterministic optimal SCb, τ = 0.5 optimal SCB and τ = 0.95 optimal SCB.

able 3
ptimal parameters, q∗

0.5 and q∗

0.95 of the drag (in drag count units) for the different airfoils. Also provided in the last column are the
umbers of simulations to solve the optimization problems.

Configuration Optimal SCB parameters CD quantiles CFD samples

Hbump X Hbump Lbump Xstart Tbump τ = 0.5 τ = 0.95

No SCB – – – – – 189.7 232.05 1
Deterministic Opt. 0.00772 0.598 0.402 0.398 1.111 148.5 185.92 116
50% Optimum 0.00739 0.676 0.421 0.374 0.789 147.3 184.2 2600
95% Optimum 0.00979 0.670 0.424 0.416 0.623 154.0 172.5 3320

SCB reduces the upper tail of the probability distribution but is less effective in other situations (lower lift and lower
Mach in particular). This mechanism is visible in Fig. 25, which shows 100 realizations of the pressure coefficients
distribution over the airfoil for the two robust optima. Realizations for the τ = 0.95 optima present two successive
shocks (sharp drops of the pressure coefficient on the extrados) while the τ = 0.5 optimal SCB tends instead to
have a single, more pronounced, shock.

Fig. 24. Comparison of the different optimum bump shapes.
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Fig. 25. Realizations of the pressure coefficient along the airfoil with SCB optimized for τ = 0.5 (left) and τ = 0.95 (right).

. Conclusions

In this paper, we have proposed a new approach for robust optimization based on quantile minimization. Our
pproach mainly targets problems that are not amenable to low dimensional parametrizations of the uncertainties,
uch that a surrogate-based approach is a priori not feasible. The approach proposed combines a Bayesian regression
ethod for the estimation of the quantile over the design space, with a sequential Bayesian procedure for the

ptimization. We have shown that the Bayesian regression constitutes a flexible approach to characterize the quality
f the quantile estimator, beyond the MLE quantile, through the sampling of the quantile’s posterior. Further, we
ave proposed a Cross-Validation strategy to select the number of control points to build the a priori estimator
f the quantile. Although the procedure is presented for RBF approximation, the procedure can apply to other
ypes of models for the quantile discretization. Finally, the optimization procedure enriches the samples set and the
uantile’s model using points drawn from the current distribution of the optimum, which accounts for the posterior
istribution of the quantile estimator. These active infilling strategies can come up with the global optimum and
djust the regression quality in areas of interest.

The method was first tested and validated in simple one and two-dimensional multi-modal explicit test functions
nd on a complex aerodynamic shape optimization problem requiring CFD simulations to compute the quantity of
nterest (the airfoil’s drag). In the latter case, we also considered the minimization of two quantiles (τ = 0.5 and
= 0.95) to illustrate the impact of more challenging problems on the behavior of the method. These examples

how that the Bayesian quantile optimization method provides reasonably accurate results for limited computational
esources.

Although successful in the examples presented, the method needs more investigation to be fully understood and
perated with full confidence. A first aspect to explore is the generalization of the quantile regression to other
ypes of representations, for instance, substituting the RBF approximation with more general procedures. Second,
n this work, we have restricted the selection of the control points to the first NX elements of a fixed sequence. A

ore effective strategy would be to select each NX points individually in Ω , possibly from a finite set. Although
V-loss criteria would continue to apply, more advanced algorithms would be needed to select the set of control
oints. Similarly, we have proposed to use sampled optimal points x∗ as candidates for the enrichment of the
egression space during the optimization process. Although this heuristic gives good results, one may be interested
n enriching the quantile discretization in a better and possibly more effective way in the future. Also, concerning
otential improvements of the Bayesian optimization procedure, future works should focus on the role of the shape
arameter α of the Asymmetric Laplace Distribution on the distribution of the minima x∗, and the introduction of

strategy for learning its value from the samples set. Similarly, the direct draw of the new sample points from
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the current distribution of x∗ could be substituted by more advanced selection criteria, favoring for instance points
ith higher potential in reducing the regression error in areas of interest. Indeed, the current infilling procedure
nly incorporates the probability of being the minimal point of the quantile, without accounting for the impact of
he new sample on the estimation of the quantile. Finally, an increase in the sample size with the quantile value is
xpected. Currently, a complete random sampling is used. For higher quantiles such as the 99% or 99.9%, more
dvanced sampling techniques will be necessary.

Regarding the application to aerodynamic shape optimization, the parallelization of the sampling at each iteration
nables the application of this framework to more complex problems. Special interest lies in the application to the
obust design of transonic wings under operational and geometrical uncertainties. In that case, the random field over
he surface of the wing will lead to thousands of uncertainties.

At a more general level, we are planning to explore the extension of the proposed optimization procedure to other
obust optimization problems. These problems naturally include not only the minimization of the mean, higher-order
oments, and conditional value at risk, but also the extension to robust multi-objective optimization.
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